Metamath Proof Explorer


Theorem eqvrelqseqdisj4

Description: Lemma for petincnvepres2 . (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion eqvrelqseqdisj4 EqvRelRB/R=ADisjSE-1A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj3 EqvRelRB/R=ADisjE-1A
2 disjimin DisjE-1ADisjSE-1A
3 1 2 syl EqvRelRB/R=ADisjSE-1A