Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
eqvrelqseqdisj4
Next ⟩
eqvrelqseqdisj5
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqvrelqseqdisj4
Description:
Lemma for
petincnvepres2
.
(Contributed by
Peter Mazsa
, 31-Dec-2021)
Ref
Expression
Assertion
eqvrelqseqdisj4
⊢
EqvRel
R
∧
B
/
R
=
A
→
Disj
S
∩
E
-1
↾
A
Proof
Step
Hyp
Ref
Expression
1
eqvrelqseqdisj3
⊢
EqvRel
R
∧
B
/
R
=
A
→
Disj
E
-1
↾
A
2
disjimin
⊢
Disj
E
-1
↾
A
→
Disj
S
∩
E
-1
↾
A
3
1
2
syl
⊢
EqvRel
R
∧
B
/
R
=
A
→
Disj
S
∩
E
-1
↾
A