Metamath Proof Explorer


Theorem eqvrelsymb

Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.)

Ref Expression
Hypothesis eqvrelsymb.1 φ EqvRel R
Assertion eqvrelsymb φ A R B B R A

Proof

Step Hyp Ref Expression
1 eqvrelsymb.1 φ EqvRel R
2 1 adantr φ A R B EqvRel R
3 simpr φ A R B A R B
4 2 3 eqvrelsym φ A R B B R A
5 1 adantr φ B R A EqvRel R
6 simpr φ B R A B R A
7 5 6 eqvrelsym φ B R A A R B
8 4 7 impbida φ A R B B R A