Metamath Proof Explorer


Theorem eqvreltrrel

Description: An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion eqvreltrrel EqvRelRTrRelR

Proof

Step Hyp Ref Expression
1 df-eqvrel EqvRelRRefRelRSymRelRTrRelR
2 1 simp3bi EqvRelRTrRelR