Metamath Proof Explorer


Theorem eqvreltrrel

Description: An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion eqvreltrrel EqvRel R TrRel R

Proof

Step Hyp Ref Expression
1 df-eqvrel EqvRel R RefRel R SymRel R TrRel R
2 1 simp3bi EqvRel R TrRel R