Metamath Proof Explorer


Theorem erALTVeq1d

Description: Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021)

Ref Expression
Hypothesis erALTVeq1d.1 φR=S
Assertion erALTVeq1d φRErALTVASErALTVA

Proof

Step Hyp Ref Expression
1 erALTVeq1d.1 φR=S
2 erALTVeq1 R=SRErALTVASErALTVA
3 1 2 syl φRErALTVASErALTVA