Metamath Proof Explorer


Theorem ercl

Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ersym.1 φRErX
ersym.2 φARB
Assertion ercl φAX

Proof

Step Hyp Ref Expression
1 ersym.1 φRErX
2 ersym.2 φARB
3 errel RErXRelR
4 1 3 syl φRelR
5 releldm RelRARBAdomR
6 4 2 5 syl2anc φAdomR
7 erdm RErXdomR=X
8 1 7 syl φdomR=X
9 6 8 eleqtrd φAX