Metamath Proof Explorer


Theorem ercpbllem

Description: Lemma for ercpbl . (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses ercpbl.r φ˙ErV
ercpbl.v φVW
ercpbl.f F=xVx˙
ercpbllem.1 φAV
Assertion ercpbllem φFA=FBA˙B

Proof

Step Hyp Ref Expression
1 ercpbl.r φ˙ErV
2 ercpbl.v φVW
3 ercpbl.f F=xVx˙
4 ercpbllem.1 φAV
5 1 2 3 divsfval φFA=A˙
6 1 2 3 divsfval φFB=B˙
7 5 6 eqeq12d φFA=FBA˙=B˙
8 1 4 erth φA˙BA˙=B˙
9 7 8 bitr4d φFA=FBA˙B