Metamath Proof Explorer


Theorem erngbase-rN

Description: The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom W ). (Contributed by NM, 9-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses erngset.h-r H=LHypK
erngset.t-r T=LTrnKW
erngset.e-r E=TEndoKW
erngset.d-r D=EDRingRKW
erng.c-r C=BaseD
Assertion erngbase-rN KVWHC=E

Proof

Step Hyp Ref Expression
1 erngset.h-r H=LHypK
2 erngset.t-r T=LTrnKW
3 erngset.e-r E=TEndoKW
4 erngset.d-r D=EDRingRKW
5 erng.c-r C=BaseD
6 1 2 3 4 erngset-rN KVWHD=BasendxE+ndxsE,tEfTsftfndxsE,tEts
7 6 fveq2d KVWHBaseD=BaseBasendxE+ndxsE,tEfTsftfndxsE,tEts
8 3 fvexi EV
9 eqid BasendxE+ndxsE,tEfTsftfndxsE,tEts=BasendxE+ndxsE,tEfTsftfndxsE,tEts
10 9 rngbase EVE=BaseBasendxE+ndxsE,tEfTsftfndxsE,tEts
11 8 10 ax-mp E=BaseBasendxE+ndxsE,tEfTsftfndxsE,tEts
12 7 5 11 3eqtr4g KVWHC=E