Metamath Proof Explorer


Theorem erngbase-rN

Description: The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom W ). (Contributed by NM, 9-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses erngset.h-r H = LHyp K
erngset.t-r T = LTrn K W
erngset.e-r E = TEndo K W
erngset.d-r D = EDRing R K W
erng.c-r C = Base D
Assertion erngbase-rN K V W H C = E

Proof

Step Hyp Ref Expression
1 erngset.h-r H = LHyp K
2 erngset.t-r T = LTrn K W
3 erngset.e-r E = TEndo K W
4 erngset.d-r D = EDRing R K W
5 erng.c-r C = Base D
6 1 2 3 4 erngset-rN K V W H D = Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s
7 6 fveq2d K V W H Base D = Base Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s
8 3 fvexi E V
9 eqid Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s = Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s
10 9 rngbase E V E = Base Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s
11 8 10 ax-mp E = Base Base ndx E + ndx s E , t E f T s f t f ndx s E , t E t s
12 7 5 11 3eqtr4g K V W H C = E