Metamath Proof Explorer


Theorem erngfplus-rN

Description: Ring addition operation. (Contributed by NM, 9-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses erngset.h-r H=LHypK
erngset.t-r T=LTrnKW
erngset.e-r E=TEndoKW
erngset.d-r D=EDRingRKW
erng.p-r +˙=+D
Assertion erngfplus-rN KVWH+˙=sE,tEfTsftf

Proof

Step Hyp Ref Expression
1 erngset.h-r H=LHypK
2 erngset.t-r T=LTrnKW
3 erngset.e-r E=TEndoKW
4 erngset.d-r D=EDRingRKW
5 erng.p-r +˙=+D
6 1 2 3 4 erngset-rN KVWHD=BasendxE+ndxsE,tEfTsftfndxsE,tEts
7 6 fveq2d KVWH+D=+BasendxE+ndxsE,tEfTsftfndxsE,tEts
8 3 fvexi EV
9 8 8 mpoex sE,tEfTsftfV
10 eqid BasendxE+ndxsE,tEfTsftfndxsE,tEts=BasendxE+ndxsE,tEfTsftfndxsE,tEts
11 10 rngplusg sE,tEfTsftfVsE,tEfTsftf=+BasendxE+ndxsE,tEfTsftfndxsE,tEts
12 9 11 ax-mp sE,tEfTsftf=+BasendxE+ndxsE,tEfTsftfndxsE,tEts
13 7 5 12 3eqtr4g KVWH+˙=sE,tEfTsftf