Metamath Proof Explorer


Theorem erngfplus

Description: Ring addition operation. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses erngset.h H=LHypK
erngset.t T=LTrnKW
erngset.e E=TEndoKW
erngset.d D=EDRingKW
erng.p +˙=+D
Assertion erngfplus KVWH+˙=sE,tEfTsftf

Proof

Step Hyp Ref Expression
1 erngset.h H=LHypK
2 erngset.t T=LTrnKW
3 erngset.e E=TEndoKW
4 erngset.d D=EDRingKW
5 erng.p +˙=+D
6 1 2 3 4 erngset KVWHD=BasendxE+ndxsE,tEfTsftfndxsE,tEst
7 6 fveq2d KVWH+D=+BasendxE+ndxsE,tEfTsftfndxsE,tEst
8 3 fvexi EV
9 8 8 mpoex sE,tEfTsftfV
10 eqid BasendxE+ndxsE,tEfTsftfndxsE,tEst=BasendxE+ndxsE,tEfTsftfndxsE,tEst
11 10 rngplusg sE,tEfTsftfVsE,tEfTsftf=+BasendxE+ndxsE,tEfTsftfndxsE,tEst
12 9 11 ax-mp sE,tEfTsftf=+BasendxE+ndxsE,tEfTsftfndxsE,tEst
13 7 5 12 3eqtr4g KVWH+˙=sE,tEfTsftf