Metamath Proof Explorer


Theorem erngplus-rN

Description: Ring addition operation. (Contributed by NM, 10-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses erngset.h-r H=LHypK
erngset.t-r T=LTrnKW
erngset.e-r E=TEndoKW
erngset.d-r D=EDRingRKW
erng.p-r +˙=+D
Assertion erngplus-rN KHLWHUEVEU+˙V=fTUfVf

Proof

Step Hyp Ref Expression
1 erngset.h-r H=LHypK
2 erngset.t-r T=LTrnKW
3 erngset.e-r E=TEndoKW
4 erngset.d-r D=EDRingRKW
5 erng.p-r +˙=+D
6 1 2 3 4 5 erngfplus-rN KHLWH+˙=sE,tEgTsgtg
7 6 oveqd KHLWHU+˙V=UsE,tEgTsgtgV
8 eqid sE,tEgTsgtg=sE,tEgTsgtg
9 8 2 tendopl UEVEUsE,tEgTsgtgV=fTUfVf
10 7 9 sylan9eq KHLWHUEVEU+˙V=fTUfVf