Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ersymb.1 | |
|
erref.2 | |
||
Assertion | erref | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersymb.1 | |
|
2 | erref.2 | |
|
3 | erdm | |
|
4 | 1 3 | syl | |
5 | 2 4 | eleqtrrd | |
6 | eldmg | |
|
7 | 2 6 | syl | |
8 | 5 7 | mpbid | |
9 | 1 | adantr | |
10 | simpr | |
|
11 | 9 10 10 | ertr4d | |
12 | 8 11 | exlimddv | |