Metamath Proof Explorer


Theorem erref

Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ersymb.1 φRErX
erref.2 φAX
Assertion erref φARA

Proof

Step Hyp Ref Expression
1 ersymb.1 φRErX
2 erref.2 φAX
3 erdm RErXdomR=X
4 1 3 syl φdomR=X
5 2 4 eleqtrrd φAdomR
6 eldmg AXAdomRxARx
7 2 6 syl φAdomRxARx
8 5 7 mpbid φxARx
9 1 adantr φARxRErX
10 simpr φARxARx
11 9 10 10 ertr4d φARxARA
12 8 11 exlimddv φARA