Metamath Proof Explorer


Theorem erth2

Description: Basic property of equivalence relations. Compare Theorem 73 of Suppes p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses erth2.1 φRErX
erth2.2 φBX
Assertion erth2 φARBAR=BR

Proof

Step Hyp Ref Expression
1 erth2.1 φRErX
2 erth2.2 φBX
3 1 ersymb φARBBRA
4 1 2 erth φBRABR=AR
5 eqcom BR=ARAR=BR
6 4 5 bitrdi φBRAAR=BR
7 3 6 bitrd φARBAR=BR