Metamath Proof Explorer


Theorem estrcbasbas

Description: An element of the base set of the base set of the category of extensible structures (i.e. the base set of an extensible structure) belongs to the considered weak universe. (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses estrcbasbas.c C=ExtStrCatU
estrcbasbas.b B=BaseC
estrcbasbas.u φUWUni
Assertion estrcbasbas φEBBaseEU

Proof

Step Hyp Ref Expression
1 estrcbasbas.c C=ExtStrCatU
2 estrcbasbas.b B=BaseC
3 estrcbasbas.u φUWUni
4 1 3 estrcbas φU=BaseC
5 2 4 eqtr4id φB=U
6 5 eleq2d φEBEU
7 baseid Base=SlotBasendx
8 simpl UWUniEUUWUni
9 simpr UWUniEUEU
10 7 8 9 wunstr UWUniEUBaseEU
11 10 ex UWUniEUBaseEU
12 3 11 syl φEUBaseEU
13 6 12 sylbid φEBBaseEU
14 13 imp φEBBaseEU