Database
BASIC CATEGORY THEORY
Examples of categories
The category of extensible structures
estrccofval
Next ⟩
estrcco
Metamath Proof Explorer
Ascii
Unicode
Theorem
estrccofval
Description:
Composition in the category of extensible structures.
(Contributed by
AV
, 7-Mar-2020)
Ref
Expression
Hypotheses
estrcbas.c
⊢
C
=
ExtStrCat
⁡
U
estrcbas.u
⊢
φ
→
U
∈
V
estrcco.o
⊢
·
˙
=
comp
⁡
C
Assertion
estrccofval
⊢
φ
→
·
˙
=
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f
Proof
Step
Hyp
Ref
Expression
1
estrcbas.c
⊢
C
=
ExtStrCat
⁡
U
2
estrcbas.u
⊢
φ
→
U
∈
V
3
estrcco.o
⊢
·
˙
=
comp
⁡
C
4
eqid
⊢
Hom
⁡
C
=
Hom
⁡
C
5
1
2
4
estrchomfval
⊢
φ
→
Hom
⁡
C
=
x
∈
U
,
y
∈
U
⟼
Base
y
Base
x
6
eqidd
⊢
φ
→
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f
=
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f
7
1
2
5
6
estrcval
⊢
φ
→
C
=
Base
ndx
U
Hom
⁡
ndx
Hom
⁡
C
comp
⁡
ndx
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f
8
catstr
⊢
Base
ndx
U
Hom
⁡
ndx
Hom
⁡
C
comp
⁡
ndx
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f
Struct
1
15
9
ccoid
⊢
comp
=
Slot
comp
⁡
ndx
10
snsstp3
⊢
comp
⁡
ndx
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f
⊆
Base
ndx
U
Hom
⁡
ndx
Hom
⁡
C
comp
⁡
ndx
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f
11
2
2
xpexd
⊢
φ
→
U
×
U
∈
V
12
mpoexga
⊢
U
×
U
∈
V
∧
U
∈
V
→
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f
∈
V
13
11
2
12
syl2anc
⊢
φ
→
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f
∈
V
14
7
8
9
10
13
3
strfv3
⊢
φ
→
·
˙
=
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
Base
z
Base
2
nd
⁡
v
,
f
∈
Base
2
nd
⁡
v
Base
1
st
⁡
v
⟼
g
∘
f