Metamath Proof Explorer


Theorem esumrnmpt

Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Hypotheses esumrnmpt.0 _ k A
esumrnmpt.1 y = B C = D
esumrnmpt.2 φ A V
esumrnmpt.3 φ k A D 0 +∞
esumrnmpt.4 φ k A B W
esumrnmpt.5 φ Disj k A B
Assertion esumrnmpt φ * y ran k A B C = * k A D

Proof

Step Hyp Ref Expression
1 esumrnmpt.0 _ k A
2 esumrnmpt.1 y = B C = D
3 esumrnmpt.2 φ A V
4 esumrnmpt.3 φ k A D 0 +∞
5 esumrnmpt.4 φ k A B W
6 esumrnmpt.5 φ Disj k A B
7 eqid k A B = k A B
8 7 rnmpt ran k A B = z | k A z = B
9 esumeq1 ran k A B = z | k A z = B * y ran k A B C = * y z | k A z = B C
10 8 9 ax-mp * y ran k A B C = * y z | k A z = B C
11 nfcv _ k C
12 nfv k φ
13 12 1 5 6 disjdsct φ Fun k A B -1
14 11 12 1 2 3 13 4 5 esumc φ * k A D = * y z | k A z = B C
15 10 14 eqtr4id φ * y ran k A B C = * k A D