Metamath Proof Explorer


Theorem esumrnmpt

Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Hypotheses esumrnmpt.0 _kA
esumrnmpt.1 y=BC=D
esumrnmpt.2 φAV
esumrnmpt.3 φkAD0+∞
esumrnmpt.4 φkABW
esumrnmpt.5 φDisjkAB
Assertion esumrnmpt φ*yrankABC=*kAD

Proof

Step Hyp Ref Expression
1 esumrnmpt.0 _kA
2 esumrnmpt.1 y=BC=D
3 esumrnmpt.2 φAV
4 esumrnmpt.3 φkAD0+∞
5 esumrnmpt.4 φkABW
6 esumrnmpt.5 φDisjkAB
7 eqid kAB=kAB
8 7 rnmpt rankAB=z|kAz=B
9 esumeq1 rankAB=z|kAz=B*yrankABC=*yz|kAz=BC
10 8 9 ax-mp *yrankABC=*yz|kAz=BC
11 nfcv _kC
12 nfv kφ
13 12 1 5 6 disjdsct φFunkAB-1
14 11 12 1 2 3 13 4 5 esumc φ*kAD=*yz|kAz=BC
15 10 14 eqtr4id φ*yrankABC=*kAD