Metamath Proof Explorer


Theorem euabsneu

Description: Another way to express existential uniqueness of a wff ph : its associated class abstraction { x | ph } is a singleton. Variant of euabsn2 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion euabsneu ∃!xφ∃!yx|φ=y

Proof

Step Hyp Ref Expression
1 mosneq *yy=x|φ
2 eqcom y=x|φx|φ=y
3 2 mobii *yy=x|φ*yx|φ=y
4 1 3 mpbi *yx|φ=y
5 4 biantru yx|φ=yyx|φ=y*yx|φ=y
6 euabsn2 ∃!xφyx|φ=y
7 df-eu ∃!yx|φ=yyx|φ=y*yx|φ=y
8 5 6 7 3bitr4i ∃!xφ∃!yx|φ=y