Metamath Proof Explorer


Theorem euabsneu

Description: Another way to express existential uniqueness of a wff ph : its associated class abstraction { x | ph } is a singleton. Variant of euabsn2 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion euabsneu ∃! x φ ∃! y x | φ = y

Proof

Step Hyp Ref Expression
1 mosneq * y y = x | φ
2 eqcom y = x | φ x | φ = y
3 2 mobii * y y = x | φ * y x | φ = y
4 1 3 mpbi * y x | φ = y
5 4 biantru y x | φ = y y x | φ = y * y x | φ = y
6 euabsn2 ∃! x φ y x | φ = y
7 df-eu ∃! y x | φ = y y x | φ = y * y x | φ = y
8 5 6 7 3bitr4i ∃! x φ ∃! y x | φ = y