Metamath Proof Explorer


Theorem eubi

Description: Equivalence theorem for the unique existential quantifier. Theorem *14.271 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) Reduce dependencies on axioms. (Revised by BJ, 7-Oct-2022)

Ref Expression
Assertion eubi xφψ∃!xφ∃!xψ

Proof

Step Hyp Ref Expression
1 exbi xφψxφxψ
2 mobi xφψ*xφ*xψ
3 1 2 anbi12d xφψxφ*xφxψ*xψ
4 df-eu ∃!xφxφ*xφ
5 df-eu ∃!xψxψ*xψ
6 3 4 5 3bitr4g xφψ∃!xφ∃!xψ