Metamath Proof Explorer


Theorem euf

Description: Version of eu6 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by NM, 12-Aug-1993) (Proof shortened by Wolf Lammen, 30-Oct-2018) Avoid ax-13 . (Revised by Wolf Lammen, 16-Oct-2022)

Ref Expression
Hypothesis euf.1 yφ
Assertion euf ∃!xφyxφx=y

Proof

Step Hyp Ref Expression
1 euf.1 yφ
2 eu6 ∃!xφzxφx=z
3 nfv yx=z
4 1 3 nfbi yφx=z
5 4 nfal yxφx=z
6 nfv zxφx=y
7 equequ2 z=yx=zx=y
8 7 bibi2d z=yφx=zφx=y
9 8 albidv z=yxφx=zxφx=y
10 5 6 9 cbvexv1 zxφx=zyxφx=y
11 2 10 bitri ∃!xφyxφx=y