| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							euf.1 | 
							 |-  F/ y ph  | 
						
						
							| 2 | 
							
								
							 | 
							eu6 | 
							 |-  ( E! x ph <-> E. z A. x ( ph <-> x = z ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nfv | 
							 |-  F/ y x = z  | 
						
						
							| 4 | 
							
								1 3
							 | 
							nfbi | 
							 |-  F/ y ( ph <-> x = z )  | 
						
						
							| 5 | 
							
								4
							 | 
							nfal | 
							 |-  F/ y A. x ( ph <-> x = z )  | 
						
						
							| 6 | 
							
								
							 | 
							nfv | 
							 |-  F/ z A. x ( ph <-> x = y )  | 
						
						
							| 7 | 
							
								
							 | 
							equequ2 | 
							 |-  ( z = y -> ( x = z <-> x = y ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							bibi2d | 
							 |-  ( z = y -> ( ( ph <-> x = z ) <-> ( ph <-> x = y ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							albidv | 
							 |-  ( z = y -> ( A. x ( ph <-> x = z ) <-> A. x ( ph <-> x = y ) ) )  | 
						
						
							| 10 | 
							
								5 6 9
							 | 
							cbvexv1 | 
							 |-  ( E. z A. x ( ph <-> x = z ) <-> E. y A. x ( ph <-> x = y ) )  | 
						
						
							| 11 | 
							
								2 10
							 | 
							bitri | 
							 |-  ( E! x ph <-> E. y A. x ( ph <-> x = y ) )  |