Metamath Proof Explorer


Theorem eusv1

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 14-Oct-2010)

Ref Expression
Assertion eusv1 ∃!yxy=Ayxy=A

Proof

Step Hyp Ref Expression
1 sp xy=Ay=A
2 sp xz=Az=A
3 eqtr3 y=Az=Ay=z
4 1 2 3 syl2an xy=Axz=Ay=z
5 4 gen2 yzxy=Axz=Ay=z
6 eqeq1 y=zy=Az=A
7 6 albidv y=zxy=Axz=A
8 7 eu4 ∃!yxy=Ayxy=Ayzxy=Axz=Ay=z
9 5 8 mpbiran2 ∃!yxy=Ayxy=A