Metamath Proof Explorer


Theorem eusv2

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 15-Oct-2010) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypothesis eusv2.1 AV
Assertion eusv2 ∃!yxy=A∃!yxy=A

Proof

Step Hyp Ref Expression
1 eusv2.1 AV
2 1 eusv2nf ∃!yxy=A_xA
3 eusvnfb ∃!yxy=A_xAAV
4 1 3 mpbiran2 ∃!yxy=A_xA
5 2 4 bitr4i ∃!yxy=A∃!yxy=A