Metamath Proof Explorer


Theorem eusv2nf

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypothesis eusv2.1 AV
Assertion eusv2nf ∃!yxy=A_xA

Proof

Step Hyp Ref Expression
1 eusv2.1 AV
2 nfeu1 y∃!yxy=A
3 nfe1 xxy=A
4 3 nfeuw x∃!yxy=A
5 1 isseti yy=A
6 19.8a y=Axy=A
7 6 ancri y=Axy=Ay=A
8 5 7 eximii yxy=Ay=A
9 eupick ∃!yxy=Ayxy=Ay=Axy=Ay=A
10 8 9 mpan2 ∃!yxy=Axy=Ay=A
11 4 10 alrimi ∃!yxy=Axxy=Ay=A
12 nf6 xy=Axxy=Ay=A
13 11 12 sylibr ∃!yxy=Axy=A
14 2 13 alrimi ∃!yxy=Ayxy=A
15 dfnfc2 xAV_xAyxy=A
16 15 1 mpg _xAyxy=A
17 14 16 sylibr ∃!yxy=A_xA
18 eusvnfb ∃!yxy=A_xAAV
19 1 18 mpbiran2 ∃!yxy=A_xA
20 eusv2i ∃!yxy=A∃!yxy=A
21 19 20 sylbir _xA∃!yxy=A
22 17 21 impbii ∃!yxy=A_xA