| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eusv2.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | nfeu1 | ⊢ Ⅎ 𝑦 ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴 | 
						
							| 3 |  | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 𝑦  =  𝐴 | 
						
							| 4 | 3 | nfeuw | ⊢ Ⅎ 𝑥 ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴 | 
						
							| 5 | 1 | isseti | ⊢ ∃ 𝑦 𝑦  =  𝐴 | 
						
							| 6 |  | 19.8a | ⊢ ( 𝑦  =  𝐴  →  ∃ 𝑥 𝑦  =  𝐴 ) | 
						
							| 7 | 6 | ancri | ⊢ ( 𝑦  =  𝐴  →  ( ∃ 𝑥 𝑦  =  𝐴  ∧  𝑦  =  𝐴 ) ) | 
						
							| 8 | 5 7 | eximii | ⊢ ∃ 𝑦 ( ∃ 𝑥 𝑦  =  𝐴  ∧  𝑦  =  𝐴 ) | 
						
							| 9 |  | eupick | ⊢ ( ( ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴  ∧  ∃ 𝑦 ( ∃ 𝑥 𝑦  =  𝐴  ∧  𝑦  =  𝐴 ) )  →  ( ∃ 𝑥 𝑦  =  𝐴  →  𝑦  =  𝐴 ) ) | 
						
							| 10 | 8 9 | mpan2 | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴  →  ( ∃ 𝑥 𝑦  =  𝐴  →  𝑦  =  𝐴 ) ) | 
						
							| 11 | 4 10 | alrimi | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴  →  ∀ 𝑥 ( ∃ 𝑥 𝑦  =  𝐴  →  𝑦  =  𝐴 ) ) | 
						
							| 12 |  | nf6 | ⊢ ( Ⅎ 𝑥 𝑦  =  𝐴  ↔  ∀ 𝑥 ( ∃ 𝑥 𝑦  =  𝐴  →  𝑦  =  𝐴 ) ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴  →  Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 14 | 2 13 | alrimi | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴  →  ∀ 𝑦 Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 15 |  | dfnfc2 | ⊢ ( ∀ 𝑥 𝐴  ∈  V  →  ( Ⅎ 𝑥 𝐴  ↔  ∀ 𝑦 Ⅎ 𝑥 𝑦  =  𝐴 ) ) | 
						
							| 16 | 15 1 | mpg | ⊢ ( Ⅎ 𝑥 𝐴  ↔  ∀ 𝑦 Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 17 | 14 16 | sylibr | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 18 |  | eusvnfb | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  ↔  ( Ⅎ 𝑥 𝐴  ∧  𝐴  ∈  V ) ) | 
						
							| 19 | 1 18 | mpbiran2 | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  ↔  Ⅎ 𝑥 𝐴 ) | 
						
							| 20 |  | eusv2i | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  →  ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴 ) | 
						
							| 21 | 19 20 | sylbir | ⊢ ( Ⅎ 𝑥 𝐴  →  ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴 ) | 
						
							| 22 | 17 21 | impbii | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦  =  𝐴  ↔  Ⅎ 𝑥 𝐴 ) |