| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcvd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 2 |  | id | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 3 | 1 2 | nfeqd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 4 | 3 | alrimiv | ⊢ ( Ⅎ 𝑥 𝐴  →  ∀ 𝑦 Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 5 |  | df-nfc | ⊢ ( Ⅎ 𝑥 { 𝐴 }  ↔  ∀ 𝑦 Ⅎ 𝑥 𝑦  ∈  { 𝐴 } ) | 
						
							| 6 |  | velsn | ⊢ ( 𝑦  ∈  { 𝐴 }  ↔  𝑦  =  𝐴 ) | 
						
							| 7 | 6 | nfbii | ⊢ ( Ⅎ 𝑥 𝑦  ∈  { 𝐴 }  ↔  Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦  ∈  { 𝐴 }  ↔  ∀ 𝑦 Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 9 | 5 8 | sylbbr | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦  =  𝐴  →  Ⅎ 𝑥 { 𝐴 } ) | 
						
							| 10 | 9 | nfunid | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦  =  𝐴  →  Ⅎ 𝑥 ∪  { 𝐴 } ) | 
						
							| 11 |  | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝐴  ∈  𝑉 | 
						
							| 12 |  | unisng | ⊢ ( 𝐴  ∈  𝑉  →  ∪  { 𝐴 }  =  𝐴 ) | 
						
							| 13 | 12 | sps | ⊢ ( ∀ 𝑥 𝐴  ∈  𝑉  →  ∪  { 𝐴 }  =  𝐴 ) | 
						
							| 14 | 11 13 | nfceqdf | ⊢ ( ∀ 𝑥 𝐴  ∈  𝑉  →  ( Ⅎ 𝑥 ∪  { 𝐴 }  ↔  Ⅎ 𝑥 𝐴 ) ) | 
						
							| 15 | 10 14 | imbitrid | ⊢ ( ∀ 𝑥 𝐴  ∈  𝑉  →  ( ∀ 𝑦 Ⅎ 𝑥 𝑦  =  𝐴  →  Ⅎ 𝑥 𝐴 ) ) | 
						
							| 16 | 4 15 | impbid2 | ⊢ ( ∀ 𝑥 𝐴  ∈  𝑉  →  ( Ⅎ 𝑥 𝐴  ↔  ∀ 𝑦 Ⅎ 𝑥 𝑦  =  𝐴 ) ) |