| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 ) |
| 2 |
|
id |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 3 |
1 2
|
nfeqd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 4 |
3
|
alrimiv |
⊢ ( Ⅎ 𝑥 𝐴 → ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 5 |
|
df-nfc |
⊢ ( Ⅎ 𝑥 { 𝐴 } ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ { 𝐴 } ) |
| 6 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 ) |
| 7 |
6
|
nfbii |
⊢ ( Ⅎ 𝑥 𝑦 ∈ { 𝐴 } ↔ Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ { 𝐴 } ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 9 |
5 8
|
sylbbr |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 { 𝐴 } ) |
| 10 |
9
|
nfunid |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 ∪ { 𝐴 } ) |
| 11 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝐴 ∈ 𝑉 |
| 12 |
|
unisng |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) |
| 13 |
12
|
sps |
⊢ ( ∀ 𝑥 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) |
| 14 |
11 13
|
nfceqdf |
⊢ ( ∀ 𝑥 𝐴 ∈ 𝑉 → ( Ⅎ 𝑥 ∪ { 𝐴 } ↔ Ⅎ 𝑥 𝐴 ) ) |
| 15 |
10 14
|
imbitrid |
⊢ ( ∀ 𝑥 𝐴 ∈ 𝑉 → ( ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) ) |
| 16 |
4 15
|
impbid2 |
⊢ ( ∀ 𝑥 𝐴 ∈ 𝑉 → ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) ) |