| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eusv2.1 |  |-  A e. _V | 
						
							| 2 |  | nfeu1 |  |-  F/ y E! y E. x y = A | 
						
							| 3 |  | nfe1 |  |-  F/ x E. x y = A | 
						
							| 4 | 3 | nfeuw |  |-  F/ x E! y E. x y = A | 
						
							| 5 | 1 | isseti |  |-  E. y y = A | 
						
							| 6 |  | 19.8a |  |-  ( y = A -> E. x y = A ) | 
						
							| 7 | 6 | ancri |  |-  ( y = A -> ( E. x y = A /\ y = A ) ) | 
						
							| 8 | 5 7 | eximii |  |-  E. y ( E. x y = A /\ y = A ) | 
						
							| 9 |  | eupick |  |-  ( ( E! y E. x y = A /\ E. y ( E. x y = A /\ y = A ) ) -> ( E. x y = A -> y = A ) ) | 
						
							| 10 | 8 9 | mpan2 |  |-  ( E! y E. x y = A -> ( E. x y = A -> y = A ) ) | 
						
							| 11 | 4 10 | alrimi |  |-  ( E! y E. x y = A -> A. x ( E. x y = A -> y = A ) ) | 
						
							| 12 |  | nf6 |  |-  ( F/ x y = A <-> A. x ( E. x y = A -> y = A ) ) | 
						
							| 13 | 11 12 | sylibr |  |-  ( E! y E. x y = A -> F/ x y = A ) | 
						
							| 14 | 2 13 | alrimi |  |-  ( E! y E. x y = A -> A. y F/ x y = A ) | 
						
							| 15 |  | dfnfc2 |  |-  ( A. x A e. _V -> ( F/_ x A <-> A. y F/ x y = A ) ) | 
						
							| 16 | 15 1 | mpg |  |-  ( F/_ x A <-> A. y F/ x y = A ) | 
						
							| 17 | 14 16 | sylibr |  |-  ( E! y E. x y = A -> F/_ x A ) | 
						
							| 18 |  | eusvnfb |  |-  ( E! y A. x y = A <-> ( F/_ x A /\ A e. _V ) ) | 
						
							| 19 | 1 18 | mpbiran2 |  |-  ( E! y A. x y = A <-> F/_ x A ) | 
						
							| 20 |  | eusv2i |  |-  ( E! y A. x y = A -> E! y E. x y = A ) | 
						
							| 21 | 19 20 | sylbir |  |-  ( F/_ x A -> E! y E. x y = A ) | 
						
							| 22 | 17 21 | impbii |  |-  ( E! y E. x y = A <-> F/_ x A ) |