Metamath Proof Explorer


Theorem eusv2i

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 14-Oct-2010) (Revised by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion eusv2i ∃!yxy=A∃!yxy=A

Proof

Step Hyp Ref Expression
1 nfeu1 y∃!yxy=A
2 nfcvd ∃!yxy=A_xy
3 eusvnf ∃!yxy=A_xA
4 2 3 nfeqd ∃!yxy=Axy=A
5 4 nfrd ∃!yxy=Axy=Axy=A
6 19.2 xy=Axy=A
7 5 6 impbid1 ∃!yxy=Axy=Axy=A
8 1 7 eubid ∃!yxy=A∃!yxy=A∃!yxy=A
9 8 ibir ∃!yxy=A∃!yxy=A