Metamath Proof Explorer


Theorem euxfr

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker euxfrw when possible. (Contributed by NM, 14-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses euxfr.1 AV
euxfr.2 ∃!yx=A
euxfr.3 x=Aφψ
Assertion euxfr ∃!xφ∃!yψ

Proof

Step Hyp Ref Expression
1 euxfr.1 AV
2 euxfr.2 ∃!yx=A
3 euxfr.3 x=Aφψ
4 euex ∃!yx=Ayx=A
5 2 4 ax-mp yx=A
6 5 biantrur φyx=Aφ
7 19.41v yx=Aφyx=Aφ
8 3 pm5.32i x=Aφx=Aψ
9 8 exbii yx=Aφyx=Aψ
10 6 7 9 3bitr2i φyx=Aψ
11 10 eubii ∃!xφ∃!xyx=Aψ
12 2 eumoi *yx=A
13 1 12 euxfr2 ∃!xyx=Aψ∃!yψ
14 11 13 bitri ∃!xφ∃!yψ