Metamath Proof Explorer


Theorem euxfr2

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker euxfr2w when possible. (Contributed by NM, 14-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses euxfr2.1 AV
euxfr2.2 *yx=A
Assertion euxfr2 ∃!xyx=Aφ∃!yφ

Proof

Step Hyp Ref Expression
1 euxfr2.1 AV
2 euxfr2.2 *yx=A
3 2euswap x*yx=Aφ∃!xyx=Aφ∃!yxx=Aφ
4 2 moani *yφx=A
5 ancom φx=Ax=Aφ
6 5 mobii *yφx=A*yx=Aφ
7 4 6 mpbi *yx=Aφ
8 3 7 mpg ∃!xyx=Aφ∃!yxx=Aφ
9 2euswap y*xx=Aφ∃!yxx=Aφ∃!xyx=Aφ
10 moeq *xx=A
11 10 moani *xφx=A
12 5 mobii *xφx=A*xx=Aφ
13 11 12 mpbi *xx=Aφ
14 9 13 mpg ∃!yxx=Aφ∃!xyx=Aφ
15 8 14 impbii ∃!xyx=Aφ∃!yxx=Aφ
16 biidd x=Aφφ
17 1 16 ceqsexv xx=Aφφ
18 17 eubii ∃!yxx=Aφ∃!yφ
19 15 18 bitri ∃!xyx=Aφ∃!yφ