| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euxfr2.1 |  |-  A e. _V | 
						
							| 2 |  | euxfr2.2 |  |-  E* y x = A | 
						
							| 3 |  | 2euswap |  |-  ( A. x E* y ( x = A /\ ph ) -> ( E! x E. y ( x = A /\ ph ) -> E! y E. x ( x = A /\ ph ) ) ) | 
						
							| 4 | 2 | moani |  |-  E* y ( ph /\ x = A ) | 
						
							| 5 |  | ancom |  |-  ( ( ph /\ x = A ) <-> ( x = A /\ ph ) ) | 
						
							| 6 | 5 | mobii |  |-  ( E* y ( ph /\ x = A ) <-> E* y ( x = A /\ ph ) ) | 
						
							| 7 | 4 6 | mpbi |  |-  E* y ( x = A /\ ph ) | 
						
							| 8 | 3 7 | mpg |  |-  ( E! x E. y ( x = A /\ ph ) -> E! y E. x ( x = A /\ ph ) ) | 
						
							| 9 |  | 2euswap |  |-  ( A. y E* x ( x = A /\ ph ) -> ( E! y E. x ( x = A /\ ph ) -> E! x E. y ( x = A /\ ph ) ) ) | 
						
							| 10 |  | moeq |  |-  E* x x = A | 
						
							| 11 | 10 | moani |  |-  E* x ( ph /\ x = A ) | 
						
							| 12 | 5 | mobii |  |-  ( E* x ( ph /\ x = A ) <-> E* x ( x = A /\ ph ) ) | 
						
							| 13 | 11 12 | mpbi |  |-  E* x ( x = A /\ ph ) | 
						
							| 14 | 9 13 | mpg |  |-  ( E! y E. x ( x = A /\ ph ) -> E! x E. y ( x = A /\ ph ) ) | 
						
							| 15 | 8 14 | impbii |  |-  ( E! x E. y ( x = A /\ ph ) <-> E! y E. x ( x = A /\ ph ) ) | 
						
							| 16 |  | biidd |  |-  ( x = A -> ( ph <-> ph ) ) | 
						
							| 17 | 1 16 | ceqsexv |  |-  ( E. x ( x = A /\ ph ) <-> ph ) | 
						
							| 18 | 17 | eubii |  |-  ( E! y E. x ( x = A /\ ph ) <-> E! y ph ) | 
						
							| 19 | 15 18 | bitri |  |-  ( E! x E. y ( x = A /\ ph ) <-> E! y ph ) |