| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euxfr2w.1 |
|- A e. _V |
| 2 |
|
euxfr2w.2 |
|- E* y x = A |
| 3 |
|
2euswapv |
|- ( A. x E* y ( x = A /\ ph ) -> ( E! x E. y ( x = A /\ ph ) -> E! y E. x ( x = A /\ ph ) ) ) |
| 4 |
2
|
moani |
|- E* y ( ph /\ x = A ) |
| 5 |
|
ancom |
|- ( ( ph /\ x = A ) <-> ( x = A /\ ph ) ) |
| 6 |
5
|
mobii |
|- ( E* y ( ph /\ x = A ) <-> E* y ( x = A /\ ph ) ) |
| 7 |
4 6
|
mpbi |
|- E* y ( x = A /\ ph ) |
| 8 |
3 7
|
mpg |
|- ( E! x E. y ( x = A /\ ph ) -> E! y E. x ( x = A /\ ph ) ) |
| 9 |
|
2euswapv |
|- ( A. y E* x ( x = A /\ ph ) -> ( E! y E. x ( x = A /\ ph ) -> E! x E. y ( x = A /\ ph ) ) ) |
| 10 |
|
moeq |
|- E* x x = A |
| 11 |
10
|
moani |
|- E* x ( ph /\ x = A ) |
| 12 |
5
|
mobii |
|- ( E* x ( ph /\ x = A ) <-> E* x ( x = A /\ ph ) ) |
| 13 |
11 12
|
mpbi |
|- E* x ( x = A /\ ph ) |
| 14 |
9 13
|
mpg |
|- ( E! y E. x ( x = A /\ ph ) -> E! x E. y ( x = A /\ ph ) ) |
| 15 |
8 14
|
impbii |
|- ( E! x E. y ( x = A /\ ph ) <-> E! y E. x ( x = A /\ ph ) ) |
| 16 |
|
biidd |
|- ( x = A -> ( ph <-> ph ) ) |
| 17 |
1 16
|
ceqsexv |
|- ( E. x ( x = A /\ ph ) <-> ph ) |
| 18 |
17
|
eubii |
|- ( E! y E. x ( x = A /\ ph ) <-> E! y ph ) |
| 19 |
15 18
|
bitri |
|- ( E! x E. y ( x = A /\ ph ) <-> E! y ph ) |