| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euxfr2w.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
euxfr2w.2 |
⊢ ∃* 𝑦 𝑥 = 𝐴 |
| 3 |
|
2euswapv |
⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 4 |
2
|
moani |
⊢ ∃* 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
| 5 |
|
ancom |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 6 |
5
|
mobii |
⊢ ( ∃* 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 7 |
4 6
|
mpbi |
⊢ ∃* 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) |
| 8 |
3 7
|
mpg |
⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 9 |
|
2euswapv |
⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ( ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 10 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = 𝐴 |
| 11 |
10
|
moani |
⊢ ∃* 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
| 12 |
5
|
mobii |
⊢ ( ∃* 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 13 |
11 12
|
mpbi |
⊢ ∃* 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) |
| 14 |
9 13
|
mpg |
⊢ ( ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 15 |
8 14
|
impbii |
⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 16 |
|
biidd |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜑 ) ) |
| 17 |
1 16
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) |
| 18 |
17
|
eubii |
⊢ ( ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 𝜑 ) |
| 19 |
15 18
|
bitri |
⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 𝜑 ) |