Metamath Proof Explorer


Theorem euxfrw

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Version of euxfr with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 14-Nov-2004) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses euxfrw.1 AV
euxfrw.2 ∃!yx=A
euxfrw.3 x=Aφψ
Assertion euxfrw ∃!xφ∃!yψ

Proof

Step Hyp Ref Expression
1 euxfrw.1 AV
2 euxfrw.2 ∃!yx=A
3 euxfrw.3 x=Aφψ
4 euex ∃!yx=Ayx=A
5 2 4 ax-mp yx=A
6 5 biantrur φyx=Aφ
7 19.41v yx=Aφyx=Aφ
8 3 pm5.32i x=Aφx=Aψ
9 8 exbii yx=Aφyx=Aψ
10 6 7 9 3bitr2i φyx=Aψ
11 10 eubii ∃!xφ∃!xyx=Aψ
12 2 eumoi *yx=A
13 1 12 euxfr2w ∃!xyx=Aψ∃!yψ
14 11 13 bitri ∃!xφ∃!yψ