Metamath Proof Explorer


Theorem euxfrw

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Version of euxfr with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 14-Nov-2004) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses euxfrw.1 A V
euxfrw.2 ∃! y x = A
euxfrw.3 x = A φ ψ
Assertion euxfrw ∃! x φ ∃! y ψ

Proof

Step Hyp Ref Expression
1 euxfrw.1 A V
2 euxfrw.2 ∃! y x = A
3 euxfrw.3 x = A φ ψ
4 euex ∃! y x = A y x = A
5 2 4 ax-mp y x = A
6 5 biantrur φ y x = A φ
7 19.41v y x = A φ y x = A φ
8 3 pm5.32i x = A φ x = A ψ
9 8 exbii y x = A φ y x = A ψ
10 6 7 9 3bitr2i φ y x = A ψ
11 10 eubii ∃! x φ ∃! x y x = A ψ
12 2 eumoi * y x = A
13 1 12 euxfr2w ∃! x y x = A ψ ∃! y ψ
14 11 13 bitri ∃! x φ ∃! y ψ