Metamath Proof Explorer


Theorem ex-decpmul

Description: Example usage of decpmul . This proof is significantly longer than 235t711 . There is more unnecessary carrying compared to 235t711 . Although saving 5 visual steps, using mulcomli early on increases the compressed proof length. (Contributed by Steven Nguyen, 10-Dec-2022) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ex-decpmul 235711=167085

Proof

Step Hyp Ref Expression
1 2nn0 20
2 3nn0 30
3 1 2 deccl 230
4 5nn0 50
5 7nn0 70
6 1nn0 10
7 5 6 deccl 710
8 eqid 71=71
9 6nn0 60
10 6 9 deccl 160
11 eqid 23=23
12 4nn0 40
13 7cn 7
14 2cn 2
15 7t2e14 72=14
16 13 14 15 mulcomli 27=14
17 4p2e6 4+2=6
18 6 12 1 16 17 decaddi 27+2=16
19 3cn 3
20 7t3e21 73=21
21 13 19 20 mulcomli 37=21
22 5 1 2 11 6 1 18 21 decmul1c 237=161
23 1p2e3 1+2=3
24 10 6 1 22 23 decaddi 237+2=163
25 3 nn0cni 23
26 25 mulridi 231=23
27 3 5 6 8 2 1 24 26 decmul2c 2371=1633
28 2 4 deccl 350
29 7 nn0cni 71
30 5cn 5
31 7t5e35 75=35
32 30 mullidi 15=5
33 4 5 6 8 31 32 decmul1 715=355
34 29 30 33 mulcomli 571=355
35 28 nn0cni 35
36 eqid 35=35
37 5p2e7 5+2=7
38 2 4 1 36 37 decaddi 35+2=37
39 35 14 38 addcomli 2+35=37
40 5p3e8 5+3=8
41 30 19 40 addcomli 3+5=8
42 1 2 28 4 26 34 39 41 decadd 231+571=378
43 30 mulridi 51=5
44 4 dec0h 5=05
45 43 44 eqtri 51=05
46 10 2 deccl 1630
47 46 2 deccl 16330
48 0nn0 00
49 2 5 deccl 370
50 8nn0 80
51 eqid 16330=16330
52 eqid 378=378
53 eqid 1633=1633
54 eqid 37=37
55 eqid 163=163
56 3p3e6 3+3=6
57 10 2 2 55 56 decaddi 163+3=166
58 6p1e7 6+1=7
59 10 9 6 57 58 decaddi 163+3+1=167
60 7p3e10 7+3=10
61 13 19 60 addcomli 3+7=10
62 46 2 2 5 53 54 59 61 decaddc2 1633+37=1670
63 8cn 8
64 63 addlidi 0+8=8
65 47 48 49 50 51 52 62 64 decadd 16330+378=16708
66 3 4 7 6 27 42 45 65 48 4 decpmul 235711=167085