Metamath Proof Explorer


Theorem ex-decpmul

Description: Example usage of decpmul . This proof is significantly longer than 235t711 . There is more unnecessary carrying compared to 235t711 . Although saving 5 visual steps, using mulcomli early on increases the compressed proof length. (Contributed by Steven Nguyen, 10-Dec-2022) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ex-decpmul 235 711 = 167085

Proof

Step Hyp Ref Expression
1 2nn0 2 0
2 3nn0 3 0
3 1 2 deccl 23 0
4 5nn0 5 0
5 7nn0 7 0
6 1nn0 1 0
7 5 6 deccl 71 0
8 eqid 71 = 71
9 6nn0 6 0
10 6 9 deccl 16 0
11 eqid 23 = 23
12 4nn0 4 0
13 7cn 7
14 2cn 2
15 7t2e14 7 2 = 14
16 13 14 15 mulcomli 2 7 = 14
17 4p2e6 4 + 2 = 6
18 6 12 1 16 17 decaddi 2 7 + 2 = 16
19 3cn 3
20 7t3e21 7 3 = 21
21 13 19 20 mulcomli 3 7 = 21
22 5 1 2 11 6 1 18 21 decmul1c 23 7 = 161
23 1p2e3 1 + 2 = 3
24 10 6 1 22 23 decaddi 23 7 + 2 = 163
25 3 nn0cni 23
26 25 mulid1i 23 1 = 23
27 3 5 6 8 2 1 24 26 decmul2c 23 71 = 1633
28 2 4 deccl 35 0
29 7 nn0cni 71
30 5cn 5
31 7t5e35 7 5 = 35
32 30 mulid2i 1 5 = 5
33 4 5 6 8 31 32 decmul1 71 5 = 355
34 29 30 33 mulcomli 5 71 = 355
35 28 nn0cni 35
36 eqid 35 = 35
37 5p2e7 5 + 2 = 7
38 2 4 1 36 37 decaddi 35 + 2 = 37
39 35 14 38 addcomli 2 + 35 = 37
40 5p3e8 5 + 3 = 8
41 30 19 40 addcomli 3 + 5 = 8
42 1 2 28 4 26 34 39 41 decadd 23 1 + 5 71 = 378
43 30 mulid1i 5 1 = 5
44 4 dec0h 5 = 05
45 43 44 eqtri 5 1 = 05
46 10 2 deccl 163 0
47 46 2 deccl 1633 0
48 0nn0 0 0
49 2 5 deccl 37 0
50 8nn0 8 0
51 eqid 16330 = 16330
52 eqid 378 = 378
53 eqid 1633 = 1633
54 eqid 37 = 37
55 eqid 163 = 163
56 3p3e6 3 + 3 = 6
57 10 2 2 55 56 decaddi 163 + 3 = 166
58 6p1e7 6 + 1 = 7
59 10 9 6 57 58 decaddi 163 + 3 + 1 = 167
60 7p3e10 7 + 3 = 10
61 13 19 60 addcomli 3 + 7 = 10
62 46 2 2 5 53 54 59 61 decaddc2 1633 + 37 = 1670
63 8cn 8
64 63 addid2i 0 + 8 = 8
65 47 48 49 50 51 52 62 64 decadd 16330 + 378 = 16708
66 3 4 7 6 27 42 45 65 48 4 decpmul 235 711 = 167085