Description: Example usage of decpmul . This proof is significantly longer than 235t711 . There is more unnecessary carrying compared to 235t711 . Although saving 5 visual steps, using mulcomli early on increases the compressed proof length. (Contributed by Steven Nguyen, 10-Dec-2022) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-decpmul | |- ( ; ; 2 3 5 x. ; ; 7 1 1 ) = ; ; ; ; ; 1 6 7 0 8 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 | |- 2 e. NN0 |
|
| 2 | 3nn0 | |- 3 e. NN0 |
|
| 3 | 1 2 | deccl | |- ; 2 3 e. NN0 |
| 4 | 5nn0 | |- 5 e. NN0 |
|
| 5 | 7nn0 | |- 7 e. NN0 |
|
| 6 | 1nn0 | |- 1 e. NN0 |
|
| 7 | 5 6 | deccl | |- ; 7 1 e. NN0 |
| 8 | eqid | |- ; 7 1 = ; 7 1 |
|
| 9 | 6nn0 | |- 6 e. NN0 |
|
| 10 | 6 9 | deccl | |- ; 1 6 e. NN0 |
| 11 | eqid | |- ; 2 3 = ; 2 3 |
|
| 12 | 4nn0 | |- 4 e. NN0 |
|
| 13 | 7cn | |- 7 e. CC |
|
| 14 | 2cn | |- 2 e. CC |
|
| 15 | 7t2e14 | |- ( 7 x. 2 ) = ; 1 4 |
|
| 16 | 13 14 15 | mulcomli | |- ( 2 x. 7 ) = ; 1 4 |
| 17 | 4p2e6 | |- ( 4 + 2 ) = 6 |
|
| 18 | 6 12 1 16 17 | decaddi | |- ( ( 2 x. 7 ) + 2 ) = ; 1 6 |
| 19 | 3cn | |- 3 e. CC |
|
| 20 | 7t3e21 | |- ( 7 x. 3 ) = ; 2 1 |
|
| 21 | 13 19 20 | mulcomli | |- ( 3 x. 7 ) = ; 2 1 |
| 22 | 5 1 2 11 6 1 18 21 | decmul1c | |- ( ; 2 3 x. 7 ) = ; ; 1 6 1 |
| 23 | 1p2e3 | |- ( 1 + 2 ) = 3 |
|
| 24 | 10 6 1 22 23 | decaddi | |- ( ( ; 2 3 x. 7 ) + 2 ) = ; ; 1 6 3 |
| 25 | 3 | nn0cni | |- ; 2 3 e. CC |
| 26 | 25 | mulridi | |- ( ; 2 3 x. 1 ) = ; 2 3 |
| 27 | 3 5 6 8 2 1 24 26 | decmul2c | |- ( ; 2 3 x. ; 7 1 ) = ; ; ; 1 6 3 3 |
| 28 | 2 4 | deccl | |- ; 3 5 e. NN0 |
| 29 | 7 | nn0cni | |- ; 7 1 e. CC |
| 30 | 5cn | |- 5 e. CC |
|
| 31 | 7t5e35 | |- ( 7 x. 5 ) = ; 3 5 |
|
| 32 | 30 | mullidi | |- ( 1 x. 5 ) = 5 |
| 33 | 4 5 6 8 31 32 | decmul1 | |- ( ; 7 1 x. 5 ) = ; ; 3 5 5 |
| 34 | 29 30 33 | mulcomli | |- ( 5 x. ; 7 1 ) = ; ; 3 5 5 |
| 35 | 28 | nn0cni | |- ; 3 5 e. CC |
| 36 | eqid | |- ; 3 5 = ; 3 5 |
|
| 37 | 5p2e7 | |- ( 5 + 2 ) = 7 |
|
| 38 | 2 4 1 36 37 | decaddi | |- ( ; 3 5 + 2 ) = ; 3 7 |
| 39 | 35 14 38 | addcomli | |- ( 2 + ; 3 5 ) = ; 3 7 |
| 40 | 5p3e8 | |- ( 5 + 3 ) = 8 |
|
| 41 | 30 19 40 | addcomli | |- ( 3 + 5 ) = 8 |
| 42 | 1 2 28 4 26 34 39 41 | decadd | |- ( ( ; 2 3 x. 1 ) + ( 5 x. ; 7 1 ) ) = ; ; 3 7 8 |
| 43 | 30 | mulridi | |- ( 5 x. 1 ) = 5 |
| 44 | 4 | dec0h | |- 5 = ; 0 5 |
| 45 | 43 44 | eqtri | |- ( 5 x. 1 ) = ; 0 5 |
| 46 | 10 2 | deccl | |- ; ; 1 6 3 e. NN0 |
| 47 | 46 2 | deccl | |- ; ; ; 1 6 3 3 e. NN0 |
| 48 | 0nn0 | |- 0 e. NN0 |
|
| 49 | 2 5 | deccl | |- ; 3 7 e. NN0 |
| 50 | 8nn0 | |- 8 e. NN0 |
|
| 51 | eqid | |- ; ; ; ; 1 6 3 3 0 = ; ; ; ; 1 6 3 3 0 |
|
| 52 | eqid | |- ; ; 3 7 8 = ; ; 3 7 8 |
|
| 53 | eqid | |- ; ; ; 1 6 3 3 = ; ; ; 1 6 3 3 |
|
| 54 | eqid | |- ; 3 7 = ; 3 7 |
|
| 55 | eqid | |- ; ; 1 6 3 = ; ; 1 6 3 |
|
| 56 | 3p3e6 | |- ( 3 + 3 ) = 6 |
|
| 57 | 10 2 2 55 56 | decaddi | |- ( ; ; 1 6 3 + 3 ) = ; ; 1 6 6 |
| 58 | 6p1e7 | |- ( 6 + 1 ) = 7 |
|
| 59 | 10 9 6 57 58 | decaddi | |- ( ( ; ; 1 6 3 + 3 ) + 1 ) = ; ; 1 6 7 |
| 60 | 7p3e10 | |- ( 7 + 3 ) = ; 1 0 |
|
| 61 | 13 19 60 | addcomli | |- ( 3 + 7 ) = ; 1 0 |
| 62 | 46 2 2 5 53 54 59 61 | decaddc2 | |- ( ; ; ; 1 6 3 3 + ; 3 7 ) = ; ; ; 1 6 7 0 |
| 63 | 8cn | |- 8 e. CC |
|
| 64 | 63 | addlidi | |- ( 0 + 8 ) = 8 |
| 65 | 47 48 49 50 51 52 62 64 | decadd | |- ( ; ; ; ; 1 6 3 3 0 + ; ; 3 7 8 ) = ; ; ; ; 1 6 7 0 8 |
| 66 | 3 4 7 6 27 42 45 65 48 4 | decpmul | |- ( ; ; 2 3 5 x. ; ; 7 1 1 ) = ; ; ; ; ; 1 6 7 0 8 5 |