Metamath Proof Explorer


Theorem ex-fv

Description: Example for df-fv . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-fv F=2639F3=9

Proof

Step Hyp Ref Expression
1 fveq1 F=2639F3=26393
2 2re 2
3 2lt3 2<3
4 2 3 ltneii 23
5 3ex 3V
6 9re 9
7 6 elexi 9V
8 5 7 fvpr2 2326393=9
9 4 8 ax-mp 26393=9
10 1 9 eqtrdi F=2639F3=9