Metamath Proof Explorer


Theorem ex-rn

Description: Example for df-rn . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-rn F=2639ranF=69

Proof

Step Hyp Ref Expression
1 rneq F=2639ranF=ran2639
2 df-pr 2639=2639
3 2 rneqi ran2639=ran2639
4 rnun ran2639=ran26ran39
5 2nn 2
6 5 elexi 2V
7 6 rnsnop ran26=6
8 3nn 3
9 8 elexi 3V
10 9 rnsnop ran39=9
11 7 10 uneq12i ran26ran39=69
12 df-pr 69=69
13 11 12 eqtr4i ran26ran39=69
14 3 4 13 3eqtri ran2639=69
15 1 14 eqtrdi F=2639ranF=69