Metamath Proof Explorer


Theorem ex-sategoel

Description: Instance of sategoelfv for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)

Ref Expression
Hypotheses sategoelfvb.s E=MSatA𝑔B
ex-sategoelel.s S=xωifx=AZifx=B𝒫Z
Assertion ex-sategoel MWUniZMAωBωABSASB

Proof

Step Hyp Ref Expression
1 sategoelfvb.s E=MSatA𝑔B
2 ex-sategoelel.s S=xωifx=AZifx=B𝒫Z
3 simpll MWUniZMAωBωABMWUni
4 3simpa AωBωABAωBω
5 4 adantl MWUniZMAωBωABAωBω
6 1 2 ex-sategoelel MWUniZMAωBωABSE
7 1 sategoelfv MWUniAωBωSESASB
8 3 5 6 7 syl3anc MWUniZMAωBωABSASB