Metamath Proof Explorer


Theorem exellimddv

Description: Eliminate an antecedent when the antecedent is elementhood, deduction version. See exellim for the closed form, which requires the use of a universal quantifier. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypotheses exellimddv.1 φ x x A
exellimddv.2 φ x A ψ
Assertion exellimddv φ ψ

Proof

Step Hyp Ref Expression
1 exellimddv.1 φ x x A
2 exellimddv.2 φ x A ψ
3 2 alrimiv φ x x A ψ
4 exellim x x A x x A ψ ψ
5 1 3 4 syl2anc φ ψ