Metamath Proof Explorer


Theorem exellimddv

Description: Eliminate an antecedent when the antecedent is elementhood, deduction version. See exellim for the closed form, which requires the use of a universal quantifier. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypotheses exellimddv.1 φxxA
exellimddv.2 φxAψ
Assertion exellimddv φψ

Proof

Step Hyp Ref Expression
1 exellimddv.1 φxxA
2 exellimddv.2 φxAψ
3 2 alrimiv φxxAψ
4 exellim xxAxxAψψ
5 1 3 4 syl2anc φψ