Metamath Proof Explorer


Theorem exellimddv

Description: Eliminate an antecedent when the antecedent is elementhood, deduction version. See exellim for the closed form, which requires the use of a universal quantifier. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypotheses exellimddv.1
|- ( ph -> E. x x e. A )
exellimddv.2
|- ( ph -> ( x e. A -> ps ) )
Assertion exellimddv
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 exellimddv.1
 |-  ( ph -> E. x x e. A )
2 exellimddv.2
 |-  ( ph -> ( x e. A -> ps ) )
3 2 alrimiv
 |-  ( ph -> A. x ( x e. A -> ps ) )
4 exellim
 |-  ( ( E. x x e. A /\ A. x ( x e. A -> ps ) ) -> ps )
5 1 3 4 syl2anc
 |-  ( ph -> ps )