Description: Eliminate an antecedent when the antecedent is elementhood, deduction version. See exellim for the closed form, which requires the use of a universal quantifier. (Contributed by ML, 17-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exellimddv.1 | |- ( ph -> E. x x e. A ) | |
| exellimddv.2 | |- ( ph -> ( x e. A -> ps ) ) | ||
| Assertion | exellimddv | |- ( ph -> ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exellimddv.1 | |- ( ph -> E. x x e. A ) | |
| 2 | exellimddv.2 | |- ( ph -> ( x e. A -> ps ) ) | |
| 3 | 2 | alrimiv | |- ( ph -> A. x ( x e. A -> ps ) ) | 
| 4 | exellim | |- ( ( E. x x e. A /\ A. x ( x e. A -> ps ) ) -> ps ) | |
| 5 | 1 3 4 | syl2anc | |- ( ph -> ps ) |