Description: Eliminate an antecedent when the antecedent is elementhood, deduction version. See exellim for the closed form, which requires the use of a universal quantifier. (Contributed by ML, 17-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | exellimddv.1 | |- ( ph -> E. x x e. A ) |
|
exellimddv.2 | |- ( ph -> ( x e. A -> ps ) ) |
||
Assertion | exellimddv | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exellimddv.1 | |- ( ph -> E. x x e. A ) |
|
2 | exellimddv.2 | |- ( ph -> ( x e. A -> ps ) ) |
|
3 | 2 | alrimiv | |- ( ph -> A. x ( x e. A -> ps ) ) |
4 | exellim | |- ( ( E. x x e. A /\ A. x ( x e. A -> ps ) ) -> ps ) |
|
5 | 1 3 4 | syl2anc | |- ( ph -> ps ) |