Description: Closed form of exellimddv . See also exlimim for a more general theorem. (Contributed by ML, 17-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exellim | |- ( ( E. x x e. A /\ A. x ( x e. A -> ph ) ) -> ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfa1 | |- F/ x A. x ( x e. A -> ph ) | |
| 2 | nfv | |- F/ x ph | |
| 3 | sp | |- ( A. x ( x e. A -> ph ) -> ( x e. A -> ph ) ) | |
| 4 | 1 2 3 | exlimd | |- ( A. x ( x e. A -> ph ) -> ( E. x x e. A -> ph ) ) | 
| 5 | 4 | impcom | |- ( ( E. x x e. A /\ A. x ( x e. A -> ph ) ) -> ph ) |