Description: Closed form of exellimddv . See also exlimim for a more general theorem. (Contributed by ML, 17-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | exellim | |- ( ( E. x x e. A /\ A. x ( x e. A -> ph ) ) -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 | |- F/ x A. x ( x e. A -> ph ) |
|
2 | nfv | |- F/ x ph |
|
3 | sp | |- ( A. x ( x e. A -> ph ) -> ( x e. A -> ph ) ) |
|
4 | 1 2 3 | exlimd | |- ( A. x ( x e. A -> ph ) -> ( E. x x e. A -> ph ) ) |
5 | 4 | impcom | |- ( ( E. x x e. A /\ A. x ( x e. A -> ph ) ) -> ph ) |