Description: Closed form of exlimimd . (Contributed by ML, 17-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exlimim | |- ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 | |- F/ x A. x ( ph -> ps ) |
|
| 2 | nfv | |- F/ x ps |
|
| 3 | sp | |- ( A. x ( ph -> ps ) -> ( ph -> ps ) ) |
|
| 4 | 1 2 3 | exlimd | |- ( A. x ( ph -> ps ) -> ( E. x ph -> ps ) ) |
| 5 | 4 | impcom | |- ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ps ) |