Description: Closed form of exlimimd . (Contributed by ML, 17-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | exlimim | |- ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 | |- F/ x A. x ( ph -> ps ) |
|
2 | nfv | |- F/ x ps |
|
3 | sp | |- ( A. x ( ph -> ps ) -> ( ph -> ps ) ) |
|
4 | 1 2 3 | exlimd | |- ( A. x ( ph -> ps ) -> ( E. x ph -> ps ) ) |
5 | 4 | impcom | |- ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ps ) |