Metamath Proof Explorer


Theorem exlimimd

Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypotheses exlimimd.1
|- ( ph -> E. x ps )
exlimimd.2
|- ( ph -> ( ps -> ch ) )
Assertion exlimimd
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 exlimimd.1
 |-  ( ph -> E. x ps )
2 exlimimd.2
 |-  ( ph -> ( ps -> ch ) )
3 2 imp
 |-  ( ( ph /\ ps ) -> ch )
4 1 3 exlimddv
 |-  ( ph -> ch )