Metamath Proof Explorer


Theorem exlimimd

Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypotheses exlimimd.1 φ x ψ
exlimimd.2 φ ψ χ
Assertion exlimimd φ χ

Proof

Step Hyp Ref Expression
1 exlimimd.1 φ x ψ
2 exlimimd.2 φ ψ χ
3 2 imp φ ψ χ
4 1 3 exlimddv φ χ