Metamath Proof Explorer


Theorem exlimimd

Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypotheses exlimimd.1 ( 𝜑 → ∃ 𝑥 𝜓 )
exlimimd.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion exlimimd ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 exlimimd.1 ( 𝜑 → ∃ 𝑥 𝜓 )
2 exlimimd.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 2 imp ( ( 𝜑𝜓 ) → 𝜒 )
4 1 3 exlimddv ( 𝜑𝜒 )