Description: Closed form of exellimddv . See also exlimim for a more general theorem. (Contributed by ML, 17-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exellim | ⊢ ( ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) | |
| 2 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 3 | sp | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 4 | 1 2 3 | exlimd | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 5 | 4 | impcom | ⊢ ( ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → 𝜑 ) |