Description: Closed form of exellimddv . See also exlimim for a more general theorem. (Contributed by ML, 17-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | exellim | ⊢ ( ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) | |
2 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
3 | sp | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
4 | 1 2 3 | exlimd | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) |
5 | 4 | impcom | ⊢ ( ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → 𝜑 ) |