Metamath Proof Explorer


Theorem exlimim

Description: Closed form of exlimimd . (Contributed by ML, 17-Jul-2020)

Ref Expression
Assertion exlimim xφxφψψ

Proof

Step Hyp Ref Expression
1 nfa1 xxφψ
2 nfv xψ
3 sp xφψφψ
4 1 2 3 exlimd xφψxφψ
5 4 impcom xφxφψψ