| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topdifinf.t |
|- T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } |
| 2 |
|
nfv |
|- F/ x A e. Fin |
| 3 |
|
nfrab1 |
|- F/_ x { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } |
| 4 |
1 3
|
nfcxfr |
|- F/_ x T |
| 5 |
|
nfcv |
|- F/_ x { (/) , A } |
| 6 |
|
0elpw |
|- (/) e. ~P A |
| 7 |
|
eleq1a |
|- ( (/) e. ~P A -> ( x = (/) -> x e. ~P A ) ) |
| 8 |
6 7
|
mp1i |
|- ( A e. Fin -> ( x = (/) -> x e. ~P A ) ) |
| 9 |
|
pwidg |
|- ( A e. Fin -> A e. ~P A ) |
| 10 |
|
eleq1a |
|- ( A e. ~P A -> ( x = A -> x e. ~P A ) ) |
| 11 |
9 10
|
syl |
|- ( A e. Fin -> ( x = A -> x e. ~P A ) ) |
| 12 |
8 11
|
jaod |
|- ( A e. Fin -> ( ( x = (/) \/ x = A ) -> x e. ~P A ) ) |
| 13 |
12
|
pm4.71rd |
|- ( A e. Fin -> ( ( x = (/) \/ x = A ) <-> ( x e. ~P A /\ ( x = (/) \/ x = A ) ) ) ) |
| 14 |
|
vex |
|- x e. _V |
| 15 |
14
|
elpr |
|- ( x e. { (/) , A } <-> ( x = (/) \/ x = A ) ) |
| 16 |
15
|
a1i |
|- ( A e. Fin -> ( x e. { (/) , A } <-> ( x = (/) \/ x = A ) ) ) |
| 17 |
1
|
reqabi |
|- ( x e. T <-> ( x e. ~P A /\ ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) |
| 18 |
|
diffi |
|- ( A e. Fin -> ( A \ x ) e. Fin ) |
| 19 |
|
biortn |
|- ( ( A \ x ) e. Fin -> ( ( x = (/) \/ x = A ) <-> ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) |
| 20 |
18 19
|
syl |
|- ( A e. Fin -> ( ( x = (/) \/ x = A ) <-> ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) |
| 21 |
20
|
anbi2d |
|- ( A e. Fin -> ( ( x e. ~P A /\ ( x = (/) \/ x = A ) ) <-> ( x e. ~P A /\ ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) ) |
| 22 |
17 21
|
bitr4id |
|- ( A e. Fin -> ( x e. T <-> ( x e. ~P A /\ ( x = (/) \/ x = A ) ) ) ) |
| 23 |
13 16 22
|
3bitr4rd |
|- ( A e. Fin -> ( x e. T <-> x e. { (/) , A } ) ) |
| 24 |
2 4 5 23
|
eqrd |
|- ( A e. Fin -> T = { (/) , A } ) |