Step |
Hyp |
Ref |
Expression |
1 |
|
topdifinf.t |
|- T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } |
2 |
|
nfv |
|- F/ x A e. Fin |
3 |
|
nfrab1 |
|- F/_ x { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } |
4 |
1 3
|
nfcxfr |
|- F/_ x T |
5 |
|
nfcv |
|- F/_ x { (/) , A } |
6 |
|
0elpw |
|- (/) e. ~P A |
7 |
|
eleq1a |
|- ( (/) e. ~P A -> ( x = (/) -> x e. ~P A ) ) |
8 |
6 7
|
mp1i |
|- ( A e. Fin -> ( x = (/) -> x e. ~P A ) ) |
9 |
|
pwidg |
|- ( A e. Fin -> A e. ~P A ) |
10 |
|
eleq1a |
|- ( A e. ~P A -> ( x = A -> x e. ~P A ) ) |
11 |
9 10
|
syl |
|- ( A e. Fin -> ( x = A -> x e. ~P A ) ) |
12 |
8 11
|
jaod |
|- ( A e. Fin -> ( ( x = (/) \/ x = A ) -> x e. ~P A ) ) |
13 |
12
|
pm4.71rd |
|- ( A e. Fin -> ( ( x = (/) \/ x = A ) <-> ( x e. ~P A /\ ( x = (/) \/ x = A ) ) ) ) |
14 |
|
vex |
|- x e. _V |
15 |
14
|
elpr |
|- ( x e. { (/) , A } <-> ( x = (/) \/ x = A ) ) |
16 |
15
|
a1i |
|- ( A e. Fin -> ( x e. { (/) , A } <-> ( x = (/) \/ x = A ) ) ) |
17 |
1
|
rabeq2i |
|- ( x e. T <-> ( x e. ~P A /\ ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) |
18 |
|
diffi |
|- ( A e. Fin -> ( A \ x ) e. Fin ) |
19 |
|
biortn |
|- ( ( A \ x ) e. Fin -> ( ( x = (/) \/ x = A ) <-> ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) |
20 |
18 19
|
syl |
|- ( A e. Fin -> ( ( x = (/) \/ x = A ) <-> ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) |
21 |
20
|
anbi2d |
|- ( A e. Fin -> ( ( x e. ~P A /\ ( x = (/) \/ x = A ) ) <-> ( x e. ~P A /\ ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) ) |
22 |
17 21
|
bitr4id |
|- ( A e. Fin -> ( x e. T <-> ( x e. ~P A /\ ( x = (/) \/ x = A ) ) ) ) |
23 |
13 16 22
|
3bitr4rd |
|- ( A e. Fin -> ( x e. T <-> x e. { (/) , A } ) ) |
24 |
2 4 5 23
|
eqrd |
|- ( A e. Fin -> T = { (/) , A } ) |