| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topdifinf.t |  |-  T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } | 
						
							| 2 |  | nfv |  |-  F/ x A e. Fin | 
						
							| 3 |  | nfrab1 |  |-  F/_ x { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } | 
						
							| 4 | 1 3 | nfcxfr |  |-  F/_ x T | 
						
							| 5 |  | nfcv |  |-  F/_ x { (/) , A } | 
						
							| 6 |  | 0elpw |  |-  (/) e. ~P A | 
						
							| 7 |  | eleq1a |  |-  ( (/) e. ~P A -> ( x = (/) -> x e. ~P A ) ) | 
						
							| 8 | 6 7 | mp1i |  |-  ( A e. Fin -> ( x = (/) -> x e. ~P A ) ) | 
						
							| 9 |  | pwidg |  |-  ( A e. Fin -> A e. ~P A ) | 
						
							| 10 |  | eleq1a |  |-  ( A e. ~P A -> ( x = A -> x e. ~P A ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( A e. Fin -> ( x = A -> x e. ~P A ) ) | 
						
							| 12 | 8 11 | jaod |  |-  ( A e. Fin -> ( ( x = (/) \/ x = A ) -> x e. ~P A ) ) | 
						
							| 13 | 12 | pm4.71rd |  |-  ( A e. Fin -> ( ( x = (/) \/ x = A ) <-> ( x e. ~P A /\ ( x = (/) \/ x = A ) ) ) ) | 
						
							| 14 |  | vex |  |-  x e. _V | 
						
							| 15 | 14 | elpr |  |-  ( x e. { (/) , A } <-> ( x = (/) \/ x = A ) ) | 
						
							| 16 | 15 | a1i |  |-  ( A e. Fin -> ( x e. { (/) , A } <-> ( x = (/) \/ x = A ) ) ) | 
						
							| 17 | 1 | reqabi |  |-  ( x e. T <-> ( x e. ~P A /\ ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) | 
						
							| 18 |  | diffi |  |-  ( A e. Fin -> ( A \ x ) e. Fin ) | 
						
							| 19 |  | biortn |  |-  ( ( A \ x ) e. Fin -> ( ( x = (/) \/ x = A ) <-> ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( A e. Fin -> ( ( x = (/) \/ x = A ) <-> ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) | 
						
							| 21 | 20 | anbi2d |  |-  ( A e. Fin -> ( ( x e. ~P A /\ ( x = (/) \/ x = A ) ) <-> ( x e. ~P A /\ ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) ) | 
						
							| 22 | 17 21 | bitr4id |  |-  ( A e. Fin -> ( x e. T <-> ( x e. ~P A /\ ( x = (/) \/ x = A ) ) ) ) | 
						
							| 23 | 13 16 22 | 3bitr4rd |  |-  ( A e. Fin -> ( x e. T <-> x e. { (/) , A } ) ) | 
						
							| 24 | 2 4 5 23 | eqrd |  |-  ( A e. Fin -> T = { (/) , A } ) |