Description: Part of Exercise 3 of Munkres p. 83. The topology of all subsets x of A such that the complement of x in A is infinite, or x is the empty set, or x is all of A , is the trivial topology when A is finite. (Contributed by ML, 14-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | topdifinf.t | |
|
Assertion | topdifinfindis | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topdifinf.t | |
|
2 | nfv | |
|
3 | nfrab1 | |
|
4 | 1 3 | nfcxfr | |
5 | nfcv | |
|
6 | 0elpw | |
|
7 | eleq1a | |
|
8 | 6 7 | mp1i | |
9 | pwidg | |
|
10 | eleq1a | |
|
11 | 9 10 | syl | |
12 | 8 11 | jaod | |
13 | 12 | pm4.71rd | |
14 | vex | |
|
15 | 14 | elpr | |
16 | 15 | a1i | |
17 | 1 | reqabi | |
18 | diffi | |
|
19 | biortn | |
|
20 | 18 19 | syl | |
21 | 20 | anbi2d | |
22 | 17 21 | bitr4id | |
23 | 13 16 22 | 3bitr4rd | |
24 | 2 4 5 23 | eqrd | |