Metamath Proof Explorer


Theorem topdifinfindis

Description: Part of Exercise 3 of Munkres p. 83. The topology of all subsets x of A such that the complement of x in A is infinite, or x is the empty set, or x is all of A , is the trivial topology when A is finite. (Contributed by ML, 14-Jul-2020)

Ref Expression
Hypothesis topdifinf.t T=x𝒫A|¬AxFinx=x=A
Assertion topdifinfindis AFinT=A

Proof

Step Hyp Ref Expression
1 topdifinf.t T=x𝒫A|¬AxFinx=x=A
2 nfv xAFin
3 nfrab1 _xx𝒫A|¬AxFinx=x=A
4 1 3 nfcxfr _xT
5 nfcv _xA
6 0elpw 𝒫A
7 eleq1a 𝒫Ax=x𝒫A
8 6 7 mp1i AFinx=x𝒫A
9 pwidg AFinA𝒫A
10 eleq1a A𝒫Ax=Ax𝒫A
11 9 10 syl AFinx=Ax𝒫A
12 8 11 jaod AFinx=x=Ax𝒫A
13 12 pm4.71rd AFinx=x=Ax𝒫Ax=x=A
14 vex xV
15 14 elpr xAx=x=A
16 15 a1i AFinxAx=x=A
17 1 reqabi xTx𝒫A¬AxFinx=x=A
18 diffi AFinAxFin
19 biortn AxFinx=x=A¬AxFinx=x=A
20 18 19 syl AFinx=x=A¬AxFinx=x=A
21 20 anbi2d AFinx𝒫Ax=x=Ax𝒫A¬AxFinx=x=A
22 17 21 bitr4id AFinxTx𝒫Ax=x=A
23 13 16 22 3bitr4rd AFinxTxA
24 2 4 5 23 eqrd AFinT=A