| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topdifinf.t | ⊢ 𝑇  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) } | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ∈  Fin | 
						
							| 3 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝒫  𝐴  ∣  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) } | 
						
							| 4 | 1 3 | nfcxfr | ⊢ Ⅎ 𝑥 𝑇 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑥 { ∅ ,  𝐴 } | 
						
							| 6 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐴 | 
						
							| 7 |  | eleq1a | ⊢ ( ∅  ∈  𝒫  𝐴  →  ( 𝑥  =  ∅  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 8 | 6 7 | mp1i | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑥  =  ∅  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 9 |  | pwidg | ⊢ ( 𝐴  ∈  Fin  →  𝐴  ∈  𝒫  𝐴 ) | 
						
							| 10 |  | eleq1a | ⊢ ( 𝐴  ∈  𝒫  𝐴  →  ( 𝑥  =  𝐴  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑥  =  𝐴  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 12 | 8 11 | jaod | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 )  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 13 | 12 | pm4.71rd | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 )  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 14 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 15 | 14 | elpr | ⊢ ( 𝑥  ∈  { ∅ ,  𝐴 }  ↔  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑥  ∈  { ∅ ,  𝐴 }  ↔  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) | 
						
							| 17 | 1 | reqabi | ⊢ ( 𝑥  ∈  𝑇  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 18 |  | diffi | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ∖  𝑥 )  ∈  Fin ) | 
						
							| 19 |  | biortn | ⊢ ( ( 𝐴  ∖  𝑥 )  ∈  Fin  →  ( ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 )  ↔  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 )  ↔  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝑥  ∈  𝒫  𝐴  ∧  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) )  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) ) | 
						
							| 22 | 17 21 | bitr4id | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑥  ∈  𝑇  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 23 | 13 16 22 | 3bitr4rd | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑥  ∈  𝑇  ↔  𝑥  ∈  { ∅ ,  𝐴 } ) ) | 
						
							| 24 | 2 4 5 23 | eqrd | ⊢ ( 𝐴  ∈  Fin  →  𝑇  =  { ∅ ,  𝐴 } ) |