Step |
Hyp |
Ref |
Expression |
1 |
|
topdifinf.t |
⊢ 𝑇 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) } |
2 |
|
nfv |
⊢ Ⅎ 𝑢 ¬ 𝐴 ∈ Fin |
3 |
|
nfab1 |
⊢ Ⅎ 𝑢 { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } |
4 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑇 |
5 |
|
abid |
⊢ ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } ↔ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } ) |
6 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑢 = { 𝑦 } ) ) |
7 |
5 6
|
bitri |
⊢ ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑢 = { 𝑦 } ) ) |
8 |
|
eqid |
⊢ { 𝑦 } = { 𝑦 } |
9 |
|
snex |
⊢ { 𝑦 } ∈ V |
10 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝒫 𝐴 ) |
11 |
|
eleq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ∈ 𝒫 𝐴 ↔ { 𝑦 } ∈ 𝒫 𝐴 ) ) |
12 |
10 11
|
syl5ibr |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) ) |
13 |
12
|
imdistani |
⊢ ( ( 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 = { 𝑦 } ∧ 𝑥 ∈ 𝒫 𝐴 ) ) |
14 |
13
|
anim2i |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) ) → ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 = { 𝑦 } ∧ 𝑥 ∈ 𝒫 𝐴 ) ) ) |
15 |
14
|
3impb |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 = { 𝑦 } ∧ 𝑥 ∈ 𝒫 𝐴 ) ) ) |
16 |
|
3anass |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑥 ∈ 𝒫 𝐴 ) ↔ ( ¬ 𝐴 ∈ Fin ∧ ( 𝑥 = { 𝑦 } ∧ 𝑥 ∈ 𝒫 𝐴 ) ) ) |
17 |
15 16
|
sylibr |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑥 ∈ 𝒫 𝐴 ) ) |
18 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
19 |
|
eleq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ∈ Fin ↔ { 𝑦 } ∈ Fin ) ) |
20 |
18 19
|
mpbiri |
⊢ ( 𝑥 = { 𝑦 } → 𝑥 ∈ Fin ) |
21 |
|
difinf |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 ∈ Fin ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ) |
22 |
20 21
|
sylan2 |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ) |
23 |
22
|
orcd |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ) → ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ) |
24 |
23
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ) ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ) ) |
25 |
24
|
ancoms |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ) ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ) ) |
26 |
25
|
3impa |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ) ) |
27 |
17 26
|
syl |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ) ) |
28 |
1
|
rabeq2i |
⊢ ( 𝑥 ∈ 𝑇 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ) ) |
29 |
27 28
|
sylibr |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝑇 ) |
30 |
|
eleq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ∈ 𝑇 ↔ { 𝑦 } ∈ 𝑇 ) ) |
31 |
30
|
3ad2ant2 |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑇 ↔ { 𝑦 } ∈ 𝑇 ) ) |
32 |
29 31
|
mpbid |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → { 𝑦 } ∈ 𝑇 ) |
33 |
32
|
sbcth |
⊢ ( { 𝑦 } ∈ V → [ { 𝑦 } / 𝑥 ] ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → { 𝑦 } ∈ 𝑇 ) ) |
34 |
9 33
|
ax-mp |
⊢ [ { 𝑦 } / 𝑥 ] ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → { 𝑦 } ∈ 𝑇 ) |
35 |
|
sbcimg |
⊢ ( { 𝑦 } ∈ V → ( [ { 𝑦 } / 𝑥 ] ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → { 𝑦 } ∈ 𝑇 ) ↔ ( [ { 𝑦 } / 𝑥 ] ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → [ { 𝑦 } / 𝑥 ] { 𝑦 } ∈ 𝑇 ) ) ) |
36 |
9 35
|
ax-mp |
⊢ ( [ { 𝑦 } / 𝑥 ] ( ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → { 𝑦 } ∈ 𝑇 ) ↔ ( [ { 𝑦 } / 𝑥 ] ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → [ { 𝑦 } / 𝑥 ] { 𝑦 } ∈ 𝑇 ) ) |
37 |
34 36
|
mpbi |
⊢ ( [ { 𝑦 } / 𝑥 ] ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → [ { 𝑦 } / 𝑥 ] { 𝑦 } ∈ 𝑇 ) |
38 |
|
sbc3an |
⊢ ( [ { 𝑦 } / 𝑥 ] ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) ↔ ( [ { 𝑦 } / 𝑥 ] ¬ 𝐴 ∈ Fin ∧ [ { 𝑦 } / 𝑥 ] 𝑥 = { 𝑦 } ∧ [ { 𝑦 } / 𝑥 ] 𝑦 ∈ 𝐴 ) ) |
39 |
|
sbcg |
⊢ ( { 𝑦 } ∈ V → ( [ { 𝑦 } / 𝑥 ] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin ) ) |
40 |
9 39
|
ax-mp |
⊢ ( [ { 𝑦 } / 𝑥 ] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin ) |
41 |
40
|
3anbi1i |
⊢ ( ( [ { 𝑦 } / 𝑥 ] ¬ 𝐴 ∈ Fin ∧ [ { 𝑦 } / 𝑥 ] 𝑥 = { 𝑦 } ∧ [ { 𝑦 } / 𝑥 ] 𝑦 ∈ 𝐴 ) ↔ ( ¬ 𝐴 ∈ Fin ∧ [ { 𝑦 } / 𝑥 ] 𝑥 = { 𝑦 } ∧ [ { 𝑦 } / 𝑥 ] 𝑦 ∈ 𝐴 ) ) |
42 |
|
eqsbc1 |
⊢ ( { 𝑦 } ∈ V → ( [ { 𝑦 } / 𝑥 ] 𝑥 = { 𝑦 } ↔ { 𝑦 } = { 𝑦 } ) ) |
43 |
9 42
|
ax-mp |
⊢ ( [ { 𝑦 } / 𝑥 ] 𝑥 = { 𝑦 } ↔ { 𝑦 } = { 𝑦 } ) |
44 |
43
|
3anbi2i |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ [ { 𝑦 } / 𝑥 ] 𝑥 = { 𝑦 } ∧ [ { 𝑦 } / 𝑥 ] 𝑦 ∈ 𝐴 ) ↔ ( ¬ 𝐴 ∈ Fin ∧ { 𝑦 } = { 𝑦 } ∧ [ { 𝑦 } / 𝑥 ] 𝑦 ∈ 𝐴 ) ) |
45 |
38 41 44
|
3bitri |
⊢ ( [ { 𝑦 } / 𝑥 ] ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) ↔ ( ¬ 𝐴 ∈ Fin ∧ { 𝑦 } = { 𝑦 } ∧ [ { 𝑦 } / 𝑥 ] 𝑦 ∈ 𝐴 ) ) |
46 |
|
sbcg |
⊢ ( { 𝑦 } ∈ V → ( [ { 𝑦 } / 𝑥 ] 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
47 |
9 46
|
ax-mp |
⊢ ( [ { 𝑦 } / 𝑥 ] 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
48 |
47
|
3anbi3i |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ { 𝑦 } = { 𝑦 } ∧ [ { 𝑦 } / 𝑥 ] 𝑦 ∈ 𝐴 ) ↔ ( ¬ 𝐴 ∈ Fin ∧ { 𝑦 } = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) ) |
49 |
45 48
|
bitri |
⊢ ( [ { 𝑦 } / 𝑥 ] ( ¬ 𝐴 ∈ Fin ∧ 𝑥 = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) ↔ ( ¬ 𝐴 ∈ Fin ∧ { 𝑦 } = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) ) |
50 |
|
sbcg |
⊢ ( { 𝑦 } ∈ V → ( [ { 𝑦 } / 𝑥 ] { 𝑦 } ∈ 𝑇 ↔ { 𝑦 } ∈ 𝑇 ) ) |
51 |
9 50
|
ax-mp |
⊢ ( [ { 𝑦 } / 𝑥 ] { 𝑦 } ∈ 𝑇 ↔ { 𝑦 } ∈ 𝑇 ) |
52 |
37 49 51
|
3imtr3i |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ { 𝑦 } = { 𝑦 } ∧ 𝑦 ∈ 𝐴 ) → { 𝑦 } ∈ 𝑇 ) |
53 |
8 52
|
mp3an2 |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑦 ∈ 𝐴 ) → { 𝑦 } ∈ 𝑇 ) |
54 |
53
|
ex |
⊢ ( ¬ 𝐴 ∈ Fin → ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝑇 ) ) |
55 |
54
|
pm4.71d |
⊢ ( ¬ 𝐴 ∈ Fin → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∧ { 𝑦 } ∈ 𝑇 ) ) ) |
56 |
55
|
anbi1d |
⊢ ( ¬ 𝐴 ∈ Fin → ( ( 𝑦 ∈ 𝐴 ∧ 𝑢 = { 𝑦 } ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ { 𝑦 } ∈ 𝑇 ) ∧ 𝑢 = { 𝑦 } ) ) ) |
57 |
56
|
exbidv |
⊢ ( ¬ 𝐴 ∈ Fin → ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑢 = { 𝑦 } ) ↔ ∃ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ { 𝑦 } ∈ 𝑇 ) ∧ 𝑢 = { 𝑦 } ) ) ) |
58 |
7 57
|
syl5bb |
⊢ ( ¬ 𝐴 ∈ Fin → ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } ↔ ∃ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ { 𝑦 } ∈ 𝑇 ) ∧ 𝑢 = { 𝑦 } ) ) ) |
59 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ { 𝑦 } ∈ 𝑇 ) ∧ 𝑢 = { 𝑦 } ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( { 𝑦 } ∈ 𝑇 ∧ 𝑢 = { 𝑦 } ) ) ) |
60 |
59
|
exbii |
⊢ ( ∃ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ { 𝑦 } ∈ 𝑇 ) ∧ 𝑢 = { 𝑦 } ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( { 𝑦 } ∈ 𝑇 ∧ 𝑢 = { 𝑦 } ) ) ) |
61 |
|
exsimpr |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( { 𝑦 } ∈ 𝑇 ∧ 𝑢 = { 𝑦 } ) ) → ∃ 𝑦 ( { 𝑦 } ∈ 𝑇 ∧ 𝑢 = { 𝑦 } ) ) |
62 |
60 61
|
sylbi |
⊢ ( ∃ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ { 𝑦 } ∈ 𝑇 ) ∧ 𝑢 = { 𝑦 } ) → ∃ 𝑦 ( { 𝑦 } ∈ 𝑇 ∧ 𝑢 = { 𝑦 } ) ) |
63 |
58 62
|
syl6bi |
⊢ ( ¬ 𝐴 ∈ Fin → ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } → ∃ 𝑦 ( { 𝑦 } ∈ 𝑇 ∧ 𝑢 = { 𝑦 } ) ) ) |
64 |
|
ancom |
⊢ ( ( { 𝑦 } ∈ 𝑇 ∧ 𝑢 = { 𝑦 } ) ↔ ( 𝑢 = { 𝑦 } ∧ { 𝑦 } ∈ 𝑇 ) ) |
65 |
|
eleq1 |
⊢ ( 𝑢 = { 𝑦 } → ( 𝑢 ∈ 𝑇 ↔ { 𝑦 } ∈ 𝑇 ) ) |
66 |
65
|
pm5.32i |
⊢ ( ( 𝑢 = { 𝑦 } ∧ 𝑢 ∈ 𝑇 ) ↔ ( 𝑢 = { 𝑦 } ∧ { 𝑦 } ∈ 𝑇 ) ) |
67 |
64 66
|
bitr4i |
⊢ ( ( { 𝑦 } ∈ 𝑇 ∧ 𝑢 = { 𝑦 } ) ↔ ( 𝑢 = { 𝑦 } ∧ 𝑢 ∈ 𝑇 ) ) |
68 |
67
|
exbii |
⊢ ( ∃ 𝑦 ( { 𝑦 } ∈ 𝑇 ∧ 𝑢 = { 𝑦 } ) ↔ ∃ 𝑦 ( 𝑢 = { 𝑦 } ∧ 𝑢 ∈ 𝑇 ) ) |
69 |
63 68
|
syl6ib |
⊢ ( ¬ 𝐴 ∈ Fin → ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } → ∃ 𝑦 ( 𝑢 = { 𝑦 } ∧ 𝑢 ∈ 𝑇 ) ) ) |
70 |
|
exsimpr |
⊢ ( ∃ 𝑦 ( 𝑢 = { 𝑦 } ∧ 𝑢 ∈ 𝑇 ) → ∃ 𝑦 𝑢 ∈ 𝑇 ) |
71 |
69 70
|
syl6 |
⊢ ( ¬ 𝐴 ∈ Fin → ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } → ∃ 𝑦 𝑢 ∈ 𝑇 ) ) |
72 |
|
ax5e |
⊢ ( ∃ 𝑦 𝑢 ∈ 𝑇 → 𝑢 ∈ 𝑇 ) |
73 |
71 72
|
syl6 |
⊢ ( ¬ 𝐴 ∈ Fin → ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } → 𝑢 ∈ 𝑇 ) ) |
74 |
2 3 4 73
|
ssrd |
⊢ ( ¬ 𝐴 ∈ Fin → { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } ⊆ 𝑇 ) |
75 |
|
eqid |
⊢ { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } = { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } |
76 |
75
|
dissneq |
⊢ ( ( { 𝑢 ∣ ∃ 𝑦 ∈ 𝐴 𝑢 = { 𝑦 } } ⊆ 𝑇 ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) → 𝑇 = 𝒫 𝐴 ) |
77 |
74 76
|
sylan |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) → 𝑇 = 𝒫 𝐴 ) |
78 |
|
nfielex |
⊢ ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
79 |
78
|
adantr |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
80 |
|
difss |
⊢ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 |
81 |
|
elfvex |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ V ) |
82 |
|
difexg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ { 𝑦 } ) ∈ V ) |
83 |
|
elpwg |
⊢ ( ( 𝐴 ∖ { 𝑦 } ) ∈ V → ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ) ) |
84 |
81 82 83
|
3syl |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ) ) |
85 |
80 84
|
mpbiri |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝐴 ) |
86 |
85
|
adantl |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝐴 ) |
87 |
|
difinf |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ { 𝑦 } ∈ Fin ) → ¬ ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ) |
88 |
18 87
|
mpan2 |
⊢ ( ¬ 𝐴 ∈ Fin → ¬ ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ) |
89 |
|
0fin |
⊢ ∅ ∈ Fin |
90 |
|
eleq1 |
⊢ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ → ( ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ↔ ∅ ∈ Fin ) ) |
91 |
89 90
|
mpbiri |
⊢ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ → ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ) |
92 |
88 91
|
nsyl |
⊢ ( ¬ 𝐴 ∈ Fin → ¬ ( 𝐴 ∖ { 𝑦 } ) = ∅ ) |
93 |
92
|
ad2antrl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) ) → ¬ ( 𝐴 ∖ { 𝑦 } ) = ∅ ) |
94 |
|
vsnid |
⊢ 𝑦 ∈ { 𝑦 } |
95 |
|
inelcm |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ { 𝑦 } ) → ( 𝐴 ∩ { 𝑦 } ) ≠ ∅ ) |
96 |
94 95
|
mpan2 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝐴 ∩ { 𝑦 } ) ≠ ∅ ) |
97 |
|
disj4 |
⊢ ( ( 𝐴 ∩ { 𝑦 } ) = ∅ ↔ ¬ ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) |
98 |
97
|
necon2abii |
⊢ ( ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ↔ ( 𝐴 ∩ { 𝑦 } ) ≠ ∅ ) |
99 |
96 98
|
sylibr |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) |
100 |
99
|
pssned |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝐴 ∖ { 𝑦 } ) ≠ 𝐴 ) |
101 |
100
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) ) → ( 𝐴 ∖ { 𝑦 } ) ≠ 𝐴 ) |
102 |
101
|
neneqd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) ) → ¬ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) |
103 |
93 102
|
jca |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) ) → ( ¬ ( 𝐴 ∖ { 𝑦 } ) = ∅ ∧ ¬ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) |
104 |
|
pm4.56 |
⊢ ( ( ¬ ( 𝐴 ∖ { 𝑦 } ) = ∅ ∧ ¬ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ↔ ¬ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) |
105 |
103 104
|
sylib |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) ) → ¬ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) |
106 |
|
difeq2 |
⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ) |
107 |
106
|
eleq1d |
⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ) ) |
108 |
107
|
notbid |
⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ¬ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ) ) |
109 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( 𝑥 = ∅ ↔ ( 𝐴 ∖ { 𝑦 } ) = ∅ ) ) |
110 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( 𝑥 = 𝐴 ↔ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) |
111 |
109 110
|
orbi12d |
⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ↔ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ) |
112 |
108 111
|
orbi12d |
⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ↔ ( ¬ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ∨ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ) ) |
113 |
112 1
|
elrab2 |
⊢ ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝑇 ↔ ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝐴 ∧ ( ¬ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ∨ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ) ) |
114 |
85
|
biantrurd |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → ( ( ¬ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ∨ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ↔ ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝐴 ∧ ( ¬ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ∨ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ) ) ) |
115 |
113 114
|
bitr4id |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝑇 ↔ ( ¬ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ∨ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ) ) |
116 |
|
dfin4 |
⊢ ( 𝐴 ∩ { 𝑦 } ) = ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) |
117 |
|
inss2 |
⊢ ( 𝐴 ∩ { 𝑦 } ) ⊆ { 𝑦 } |
118 |
|
ssfi |
⊢ ( ( { 𝑦 } ∈ Fin ∧ ( 𝐴 ∩ { 𝑦 } ) ⊆ { 𝑦 } ) → ( 𝐴 ∩ { 𝑦 } ) ∈ Fin ) |
119 |
18 117 118
|
mp2an |
⊢ ( 𝐴 ∩ { 𝑦 } ) ∈ Fin |
120 |
116 119
|
eqeltrri |
⊢ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin |
121 |
|
biortn |
⊢ ( ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin → ( ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ↔ ( ¬ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ∨ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ) ) |
122 |
120 121
|
ax-mp |
⊢ ( ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ↔ ( ¬ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ∨ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ) |
123 |
115 122
|
bitr4di |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝑇 ↔ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ) |
124 |
123
|
ad2antll |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) ) → ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝑇 ↔ ( ( 𝐴 ∖ { 𝑦 } ) = ∅ ∨ ( 𝐴 ∖ { 𝑦 } ) = 𝐴 ) ) ) |
125 |
105 124
|
mtbird |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) ) → ¬ ( 𝐴 ∖ { 𝑦 } ) ∈ 𝑇 ) |
126 |
125
|
expcom |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝑦 ∈ 𝐴 → ¬ ( 𝐴 ∖ { 𝑦 } ) ∈ 𝑇 ) ) |
127 |
|
nelneq2 |
⊢ ( ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝐴 ∧ ¬ ( 𝐴 ∖ { 𝑦 } ) ∈ 𝑇 ) → ¬ 𝒫 𝐴 = 𝑇 ) |
128 |
|
eqcom |
⊢ ( 𝑇 = 𝒫 𝐴 ↔ 𝒫 𝐴 = 𝑇 ) |
129 |
127 128
|
sylnibr |
⊢ ( ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝐴 ∧ ¬ ( 𝐴 ∖ { 𝑦 } ) ∈ 𝑇 ) → ¬ 𝑇 = 𝒫 𝐴 ) |
130 |
86 126 129
|
syl6an |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝑦 ∈ 𝐴 → ¬ 𝑇 = 𝒫 𝐴 ) ) |
131 |
79 130
|
exellimddv |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) → ¬ 𝑇 = 𝒫 𝐴 ) |
132 |
77 131
|
pm2.65da |
⊢ ( ¬ 𝐴 ∈ Fin → ¬ 𝑇 ∈ ( TopOn ‘ 𝐴 ) ) |
133 |
132
|
con4i |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ Fin ) |