| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topdifinf.t | ⊢ 𝑇  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) } | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑢 ¬  𝐴  ∈  Fin | 
						
							| 3 |  | nfab1 | ⊢ Ⅎ 𝑢 { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } } | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑢 𝑇 | 
						
							| 5 |  | abid | ⊢ ( 𝑢  ∈  { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  ↔  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } ) | 
						
							| 6 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 }  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑢  =  { 𝑦 } ) ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( 𝑢  ∈  { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑢  =  { 𝑦 } ) ) | 
						
							| 8 |  | eqid | ⊢ { 𝑦 }  =  { 𝑦 } | 
						
							| 9 |  | vsnex | ⊢ { 𝑦 }  ∈  V | 
						
							| 10 |  | snelpwi | ⊢ ( 𝑦  ∈  𝐴  →  { 𝑦 }  ∈  𝒫  𝐴 ) | 
						
							| 11 |  | eleq1 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑥  ∈  𝒫  𝐴  ↔  { 𝑦 }  ∈  𝒫  𝐴 ) ) | 
						
							| 12 | 10 11 | imbitrrid | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑦  ∈  𝐴  →  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 13 | 12 | imdistani | ⊢ ( ( 𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  =  { 𝑦 }  ∧  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 14 | 13 | anim2i | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  ( 𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 ) )  →  ( ¬  𝐴  ∈  Fin  ∧  ( 𝑥  =  { 𝑦 }  ∧  𝑥  ∈  𝒫  𝐴 ) ) ) | 
						
							| 15 | 14 | 3impb | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝐴  ∈  Fin  ∧  ( 𝑥  =  { 𝑦 }  ∧  𝑥  ∈  𝒫  𝐴 ) ) ) | 
						
							| 16 |  | 3anass | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑥  ∈  𝒫  𝐴 )  ↔  ( ¬  𝐴  ∈  Fin  ∧  ( 𝑥  =  { 𝑦 }  ∧  𝑥  ∈  𝒫  𝐴 ) ) ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑥  ∈  𝒫  𝐴 ) ) | 
						
							| 18 |  | snfi | ⊢ { 𝑦 }  ∈  Fin | 
						
							| 19 |  | eleq1 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑥  ∈  Fin  ↔  { 𝑦 }  ∈  Fin ) ) | 
						
							| 20 | 18 19 | mpbiri | ⊢ ( 𝑥  =  { 𝑦 }  →  𝑥  ∈  Fin ) | 
						
							| 21 |  | difinf | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  ∈  Fin )  →  ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin ) | 
						
							| 22 | 20 21 | sylan2 | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 } )  →  ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin ) | 
						
							| 23 | 22 | orcd | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 } )  →  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) | 
						
							| 24 | 23 | anim2i | ⊢ ( ( 𝑥  ∈  𝒫  𝐴  ∧  ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 } ) )  →  ( 𝑥  ∈  𝒫  𝐴  ∧  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 25 | 24 | ancoms | ⊢ ( ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 } )  ∧  𝑥  ∈  𝒫  𝐴 )  →  ( 𝑥  ∈  𝒫  𝐴  ∧  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 26 | 25 | 3impa | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑥  ∈  𝒫  𝐴 )  →  ( 𝑥  ∈  𝒫  𝐴  ∧  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 27 | 17 26 | syl | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ∈  𝒫  𝐴  ∧  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 28 | 1 | reqabi | ⊢ ( 𝑥  ∈  𝑇  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 29 | 27 28 | sylibr | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  𝑥  ∈  𝑇 ) | 
						
							| 30 |  | eleq1 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑥  ∈  𝑇  ↔  { 𝑦 }  ∈  𝑇 ) ) | 
						
							| 31 | 30 | 3ad2ant2 | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ∈  𝑇  ↔  { 𝑦 }  ∈  𝑇 ) ) | 
						
							| 32 | 29 31 | mpbid | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  { 𝑦 }  ∈  𝑇 ) | 
						
							| 33 | 32 | sbcth | ⊢ ( { 𝑦 }  ∈  V  →  [ { 𝑦 }  /  𝑥 ] ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  { 𝑦 }  ∈  𝑇 ) ) | 
						
							| 34 | 9 33 | ax-mp | ⊢ [ { 𝑦 }  /  𝑥 ] ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  { 𝑦 }  ∈  𝑇 ) | 
						
							| 35 |  | sbcimg | ⊢ ( { 𝑦 }  ∈  V  →  ( [ { 𝑦 }  /  𝑥 ] ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  { 𝑦 }  ∈  𝑇 )  ↔  ( [ { 𝑦 }  /  𝑥 ] ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  [ { 𝑦 }  /  𝑥 ] { 𝑦 }  ∈  𝑇 ) ) ) | 
						
							| 36 | 9 35 | ax-mp | ⊢ ( [ { 𝑦 }  /  𝑥 ] ( ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  { 𝑦 }  ∈  𝑇 )  ↔  ( [ { 𝑦 }  /  𝑥 ] ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  [ { 𝑦 }  /  𝑥 ] { 𝑦 }  ∈  𝑇 ) ) | 
						
							| 37 | 34 36 | mpbi | ⊢ ( [ { 𝑦 }  /  𝑥 ] ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  [ { 𝑦 }  /  𝑥 ] { 𝑦 }  ∈  𝑇 ) | 
						
							| 38 |  | sbc3an | ⊢ ( [ { 𝑦 }  /  𝑥 ] ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  ↔  ( [ { 𝑦 }  /  𝑥 ] ¬  𝐴  ∈  Fin  ∧  [ { 𝑦 }  /  𝑥 ] 𝑥  =  { 𝑦 }  ∧  [ { 𝑦 }  /  𝑥 ] 𝑦  ∈  𝐴 ) ) | 
						
							| 39 |  | sbcg | ⊢ ( { 𝑦 }  ∈  V  →  ( [ { 𝑦 }  /  𝑥 ] ¬  𝐴  ∈  Fin  ↔  ¬  𝐴  ∈  Fin ) ) | 
						
							| 40 | 9 39 | ax-mp | ⊢ ( [ { 𝑦 }  /  𝑥 ] ¬  𝐴  ∈  Fin  ↔  ¬  𝐴  ∈  Fin ) | 
						
							| 41 | 40 | 3anbi1i | ⊢ ( ( [ { 𝑦 }  /  𝑥 ] ¬  𝐴  ∈  Fin  ∧  [ { 𝑦 }  /  𝑥 ] 𝑥  =  { 𝑦 }  ∧  [ { 𝑦 }  /  𝑥 ] 𝑦  ∈  𝐴 )  ↔  ( ¬  𝐴  ∈  Fin  ∧  [ { 𝑦 }  /  𝑥 ] 𝑥  =  { 𝑦 }  ∧  [ { 𝑦 }  /  𝑥 ] 𝑦  ∈  𝐴 ) ) | 
						
							| 42 |  | eqsbc1 | ⊢ ( { 𝑦 }  ∈  V  →  ( [ { 𝑦 }  /  𝑥 ] 𝑥  =  { 𝑦 }  ↔  { 𝑦 }  =  { 𝑦 } ) ) | 
						
							| 43 | 9 42 | ax-mp | ⊢ ( [ { 𝑦 }  /  𝑥 ] 𝑥  =  { 𝑦 }  ↔  { 𝑦 }  =  { 𝑦 } ) | 
						
							| 44 | 43 | 3anbi2i | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  [ { 𝑦 }  /  𝑥 ] 𝑥  =  { 𝑦 }  ∧  [ { 𝑦 }  /  𝑥 ] 𝑦  ∈  𝐴 )  ↔  ( ¬  𝐴  ∈  Fin  ∧  { 𝑦 }  =  { 𝑦 }  ∧  [ { 𝑦 }  /  𝑥 ] 𝑦  ∈  𝐴 ) ) | 
						
							| 45 | 38 41 44 | 3bitri | ⊢ ( [ { 𝑦 }  /  𝑥 ] ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  ↔  ( ¬  𝐴  ∈  Fin  ∧  { 𝑦 }  =  { 𝑦 }  ∧  [ { 𝑦 }  /  𝑥 ] 𝑦  ∈  𝐴 ) ) | 
						
							| 46 |  | sbcg | ⊢ ( { 𝑦 }  ∈  V  →  ( [ { 𝑦 }  /  𝑥 ] 𝑦  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 47 | 9 46 | ax-mp | ⊢ ( [ { 𝑦 }  /  𝑥 ] 𝑦  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) | 
						
							| 48 | 47 | 3anbi3i | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  { 𝑦 }  =  { 𝑦 }  ∧  [ { 𝑦 }  /  𝑥 ] 𝑦  ∈  𝐴 )  ↔  ( ¬  𝐴  ∈  Fin  ∧  { 𝑦 }  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 49 | 45 48 | bitri | ⊢ ( [ { 𝑦 }  /  𝑥 ] ( ¬  𝐴  ∈  Fin  ∧  𝑥  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  ↔  ( ¬  𝐴  ∈  Fin  ∧  { 𝑦 }  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 50 |  | sbcg | ⊢ ( { 𝑦 }  ∈  V  →  ( [ { 𝑦 }  /  𝑥 ] { 𝑦 }  ∈  𝑇  ↔  { 𝑦 }  ∈  𝑇 ) ) | 
						
							| 51 | 9 50 | ax-mp | ⊢ ( [ { 𝑦 }  /  𝑥 ] { 𝑦 }  ∈  𝑇  ↔  { 𝑦 }  ∈  𝑇 ) | 
						
							| 52 | 37 49 51 | 3imtr3i | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  { 𝑦 }  =  { 𝑦 }  ∧  𝑦  ∈  𝐴 )  →  { 𝑦 }  ∈  𝑇 ) | 
						
							| 53 | 8 52 | mp3an2 | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑦  ∈  𝐴 )  →  { 𝑦 }  ∈  𝑇 ) | 
						
							| 54 | 53 | ex | ⊢ ( ¬  𝐴  ∈  Fin  →  ( 𝑦  ∈  𝐴  →  { 𝑦 }  ∈  𝑇 ) ) | 
						
							| 55 | 54 | pm4.71d | ⊢ ( ¬  𝐴  ∈  Fin  →  ( 𝑦  ∈  𝐴  ↔  ( 𝑦  ∈  𝐴  ∧  { 𝑦 }  ∈  𝑇 ) ) ) | 
						
							| 56 | 55 | anbi1d | ⊢ ( ¬  𝐴  ∈  Fin  →  ( ( 𝑦  ∈  𝐴  ∧  𝑢  =  { 𝑦 } )  ↔  ( ( 𝑦  ∈  𝐴  ∧  { 𝑦 }  ∈  𝑇 )  ∧  𝑢  =  { 𝑦 } ) ) ) | 
						
							| 57 | 56 | exbidv | ⊢ ( ¬  𝐴  ∈  Fin  →  ( ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑢  =  { 𝑦 } )  ↔  ∃ 𝑦 ( ( 𝑦  ∈  𝐴  ∧  { 𝑦 }  ∈  𝑇 )  ∧  𝑢  =  { 𝑦 } ) ) ) | 
						
							| 58 | 7 57 | bitrid | ⊢ ( ¬  𝐴  ∈  Fin  →  ( 𝑢  ∈  { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  ↔  ∃ 𝑦 ( ( 𝑦  ∈  𝐴  ∧  { 𝑦 }  ∈  𝑇 )  ∧  𝑢  =  { 𝑦 } ) ) ) | 
						
							| 59 |  | anass | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  { 𝑦 }  ∈  𝑇 )  ∧  𝑢  =  { 𝑦 } )  ↔  ( 𝑦  ∈  𝐴  ∧  ( { 𝑦 }  ∈  𝑇  ∧  𝑢  =  { 𝑦 } ) ) ) | 
						
							| 60 | 59 | exbii | ⊢ ( ∃ 𝑦 ( ( 𝑦  ∈  𝐴  ∧  { 𝑦 }  ∈  𝑇 )  ∧  𝑢  =  { 𝑦 } )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ( { 𝑦 }  ∈  𝑇  ∧  𝑢  =  { 𝑦 } ) ) ) | 
						
							| 61 |  | exsimpr | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ( { 𝑦 }  ∈  𝑇  ∧  𝑢  =  { 𝑦 } ) )  →  ∃ 𝑦 ( { 𝑦 }  ∈  𝑇  ∧  𝑢  =  { 𝑦 } ) ) | 
						
							| 62 | 60 61 | sylbi | ⊢ ( ∃ 𝑦 ( ( 𝑦  ∈  𝐴  ∧  { 𝑦 }  ∈  𝑇 )  ∧  𝑢  =  { 𝑦 } )  →  ∃ 𝑦 ( { 𝑦 }  ∈  𝑇  ∧  𝑢  =  { 𝑦 } ) ) | 
						
							| 63 | 58 62 | biimtrdi | ⊢ ( ¬  𝐴  ∈  Fin  →  ( 𝑢  ∈  { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  →  ∃ 𝑦 ( { 𝑦 }  ∈  𝑇  ∧  𝑢  =  { 𝑦 } ) ) ) | 
						
							| 64 |  | ancom | ⊢ ( ( { 𝑦 }  ∈  𝑇  ∧  𝑢  =  { 𝑦 } )  ↔  ( 𝑢  =  { 𝑦 }  ∧  { 𝑦 }  ∈  𝑇 ) ) | 
						
							| 65 |  | eleq1 | ⊢ ( 𝑢  =  { 𝑦 }  →  ( 𝑢  ∈  𝑇  ↔  { 𝑦 }  ∈  𝑇 ) ) | 
						
							| 66 | 65 | pm5.32i | ⊢ ( ( 𝑢  =  { 𝑦 }  ∧  𝑢  ∈  𝑇 )  ↔  ( 𝑢  =  { 𝑦 }  ∧  { 𝑦 }  ∈  𝑇 ) ) | 
						
							| 67 | 64 66 | bitr4i | ⊢ ( ( { 𝑦 }  ∈  𝑇  ∧  𝑢  =  { 𝑦 } )  ↔  ( 𝑢  =  { 𝑦 }  ∧  𝑢  ∈  𝑇 ) ) | 
						
							| 68 | 67 | exbii | ⊢ ( ∃ 𝑦 ( { 𝑦 }  ∈  𝑇  ∧  𝑢  =  { 𝑦 } )  ↔  ∃ 𝑦 ( 𝑢  =  { 𝑦 }  ∧  𝑢  ∈  𝑇 ) ) | 
						
							| 69 | 63 68 | imbitrdi | ⊢ ( ¬  𝐴  ∈  Fin  →  ( 𝑢  ∈  { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  →  ∃ 𝑦 ( 𝑢  =  { 𝑦 }  ∧  𝑢  ∈  𝑇 ) ) ) | 
						
							| 70 |  | exsimpr | ⊢ ( ∃ 𝑦 ( 𝑢  =  { 𝑦 }  ∧  𝑢  ∈  𝑇 )  →  ∃ 𝑦 𝑢  ∈  𝑇 ) | 
						
							| 71 | 69 70 | syl6 | ⊢ ( ¬  𝐴  ∈  Fin  →  ( 𝑢  ∈  { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  →  ∃ 𝑦 𝑢  ∈  𝑇 ) ) | 
						
							| 72 |  | ax5e | ⊢ ( ∃ 𝑦 𝑢  ∈  𝑇  →  𝑢  ∈  𝑇 ) | 
						
							| 73 | 71 72 | syl6 | ⊢ ( ¬  𝐴  ∈  Fin  →  ( 𝑢  ∈  { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  →  𝑢  ∈  𝑇 ) ) | 
						
							| 74 | 2 3 4 73 | ssrd | ⊢ ( ¬  𝐴  ∈  Fin  →  { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  ⊆  𝑇 ) | 
						
							| 75 |  | eqid | ⊢ { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  =  { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } } | 
						
							| 76 | 75 | dissneq | ⊢ ( ( { 𝑢  ∣  ∃ 𝑦  ∈  𝐴 𝑢  =  { 𝑦 } }  ⊆  𝑇  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) )  →  𝑇  =  𝒫  𝐴 ) | 
						
							| 77 | 74 76 | sylan | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) )  →  𝑇  =  𝒫  𝐴 ) | 
						
							| 78 |  | nfielex | ⊢ ( ¬  𝐴  ∈  Fin  →  ∃ 𝑦 𝑦  ∈  𝐴 ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) )  →  ∃ 𝑦 𝑦  ∈  𝐴 ) | 
						
							| 80 |  | difss | ⊢ ( 𝐴  ∖  { 𝑦 } )  ⊆  𝐴 | 
						
							| 81 |  | elfvex | ⊢ ( 𝑇  ∈  ( TopOn ‘ 𝐴 )  →  𝐴  ∈  V ) | 
						
							| 82 |  | difexg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∖  { 𝑦 } )  ∈  V ) | 
						
							| 83 |  | elpwg | ⊢ ( ( 𝐴  ∖  { 𝑦 } )  ∈  V  →  ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝒫  𝐴  ↔  ( 𝐴  ∖  { 𝑦 } )  ⊆  𝐴 ) ) | 
						
							| 84 | 81 82 83 | 3syl | ⊢ ( 𝑇  ∈  ( TopOn ‘ 𝐴 )  →  ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝒫  𝐴  ↔  ( 𝐴  ∖  { 𝑦 } )  ⊆  𝐴 ) ) | 
						
							| 85 | 80 84 | mpbiri | ⊢ ( 𝑇  ∈  ( TopOn ‘ 𝐴 )  →  ( 𝐴  ∖  { 𝑦 } )  ∈  𝒫  𝐴 ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) )  →  ( 𝐴  ∖  { 𝑦 } )  ∈  𝒫  𝐴 ) | 
						
							| 87 |  | difinf | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  { 𝑦 }  ∈  Fin )  →  ¬  ( 𝐴  ∖  { 𝑦 } )  ∈  Fin ) | 
						
							| 88 | 18 87 | mpan2 | ⊢ ( ¬  𝐴  ∈  Fin  →  ¬  ( 𝐴  ∖  { 𝑦 } )  ∈  Fin ) | 
						
							| 89 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 90 |  | eleq1 | ⊢ ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  →  ( ( 𝐴  ∖  { 𝑦 } )  ∈  Fin  ↔  ∅  ∈  Fin ) ) | 
						
							| 91 | 89 90 | mpbiri | ⊢ ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  →  ( 𝐴  ∖  { 𝑦 } )  ∈  Fin ) | 
						
							| 92 | 88 91 | nsyl | ⊢ ( ¬  𝐴  ∈  Fin  →  ¬  ( 𝐴  ∖  { 𝑦 } )  =  ∅ ) | 
						
							| 93 | 92 | ad2antrl | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) ) )  →  ¬  ( 𝐴  ∖  { 𝑦 } )  =  ∅ ) | 
						
							| 94 |  | vsnid | ⊢ 𝑦  ∈  { 𝑦 } | 
						
							| 95 |  | inelcm | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  { 𝑦 } )  →  ( 𝐴  ∩  { 𝑦 } )  ≠  ∅ ) | 
						
							| 96 | 94 95 | mpan2 | ⊢ ( 𝑦  ∈  𝐴  →  ( 𝐴  ∩  { 𝑦 } )  ≠  ∅ ) | 
						
							| 97 |  | disj4 | ⊢ ( ( 𝐴  ∩  { 𝑦 } )  =  ∅  ↔  ¬  ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴 ) | 
						
							| 98 | 97 | necon2abii | ⊢ ( ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴  ↔  ( 𝐴  ∩  { 𝑦 } )  ≠  ∅ ) | 
						
							| 99 | 96 98 | sylibr | ⊢ ( 𝑦  ∈  𝐴  →  ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴 ) | 
						
							| 100 | 99 | pssned | ⊢ ( 𝑦  ∈  𝐴  →  ( 𝐴  ∖  { 𝑦 } )  ≠  𝐴 ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) ) )  →  ( 𝐴  ∖  { 𝑦 } )  ≠  𝐴 ) | 
						
							| 102 | 101 | neneqd | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) ) )  →  ¬  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) | 
						
							| 103 | 93 102 | jca | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) ) )  →  ( ¬  ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∧  ¬  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) | 
						
							| 104 |  | pm4.56 | ⊢ ( ( ¬  ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∧  ¬  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 )  ↔  ¬  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) | 
						
							| 105 | 103 104 | sylib | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) ) )  →  ¬  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) | 
						
							| 106 |  | difeq2 | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) ) ) | 
						
							| 107 | 106 | eleq1d | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( ( 𝐴  ∖  𝑥 )  ∈  Fin  ↔  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin ) ) | 
						
							| 108 | 107 | notbid | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ↔  ¬  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin ) ) | 
						
							| 109 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( 𝑥  =  ∅  ↔  ( 𝐴  ∖  { 𝑦 } )  =  ∅ ) ) | 
						
							| 110 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( 𝑥  =  𝐴  ↔  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) | 
						
							| 111 | 109 110 | orbi12d | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 )  ↔  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) ) | 
						
							| 112 | 108 111 | orbi12d | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) )  ↔  ( ¬  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin  ∨  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) ) ) | 
						
							| 113 | 112 1 | elrab2 | ⊢ ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝑇  ↔  ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝒫  𝐴  ∧  ( ¬  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin  ∨  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) ) ) | 
						
							| 114 | 85 | biantrurd | ⊢ ( 𝑇  ∈  ( TopOn ‘ 𝐴 )  →  ( ( ¬  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin  ∨  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) )  ↔  ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝒫  𝐴  ∧  ( ¬  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin  ∨  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) ) ) ) | 
						
							| 115 | 113 114 | bitr4id | ⊢ ( 𝑇  ∈  ( TopOn ‘ 𝐴 )  →  ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝑇  ↔  ( ¬  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin  ∨  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) ) ) | 
						
							| 116 |  | dfin4 | ⊢ ( 𝐴  ∩  { 𝑦 } )  =  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 117 |  | inss2 | ⊢ ( 𝐴  ∩  { 𝑦 } )  ⊆  { 𝑦 } | 
						
							| 118 |  | ssfi | ⊢ ( ( { 𝑦 }  ∈  Fin  ∧  ( 𝐴  ∩  { 𝑦 } )  ⊆  { 𝑦 } )  →  ( 𝐴  ∩  { 𝑦 } )  ∈  Fin ) | 
						
							| 119 | 18 117 118 | mp2an | ⊢ ( 𝐴  ∩  { 𝑦 } )  ∈  Fin | 
						
							| 120 | 116 119 | eqeltrri | ⊢ ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin | 
						
							| 121 |  | biortn | ⊢ ( ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin  →  ( ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 )  ↔  ( ¬  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin  ∨  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) ) ) | 
						
							| 122 | 120 121 | ax-mp | ⊢ ( ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 )  ↔  ( ¬  ( 𝐴  ∖  ( 𝐴  ∖  { 𝑦 } ) )  ∈  Fin  ∨  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) ) | 
						
							| 123 | 115 122 | bitr4di | ⊢ ( 𝑇  ∈  ( TopOn ‘ 𝐴 )  →  ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝑇  ↔  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) ) | 
						
							| 124 | 123 | ad2antll | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) ) )  →  ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝑇  ↔  ( ( 𝐴  ∖  { 𝑦 } )  =  ∅  ∨  ( 𝐴  ∖  { 𝑦 } )  =  𝐴 ) ) ) | 
						
							| 125 | 105 124 | mtbird | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) ) )  →  ¬  ( 𝐴  ∖  { 𝑦 } )  ∈  𝑇 ) | 
						
							| 126 | 125 | expcom | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) )  →  ( 𝑦  ∈  𝐴  →  ¬  ( 𝐴  ∖  { 𝑦 } )  ∈  𝑇 ) ) | 
						
							| 127 |  | nelneq2 | ⊢ ( ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝒫  𝐴  ∧  ¬  ( 𝐴  ∖  { 𝑦 } )  ∈  𝑇 )  →  ¬  𝒫  𝐴  =  𝑇 ) | 
						
							| 128 |  | eqcom | ⊢ ( 𝑇  =  𝒫  𝐴  ↔  𝒫  𝐴  =  𝑇 ) | 
						
							| 129 | 127 128 | sylnibr | ⊢ ( ( ( 𝐴  ∖  { 𝑦 } )  ∈  𝒫  𝐴  ∧  ¬  ( 𝐴  ∖  { 𝑦 } )  ∈  𝑇 )  →  ¬  𝑇  =  𝒫  𝐴 ) | 
						
							| 130 | 86 126 129 | syl6an | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) )  →  ( 𝑦  ∈  𝐴  →  ¬  𝑇  =  𝒫  𝐴 ) ) | 
						
							| 131 | 79 130 | exellimddv | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  𝑇  ∈  ( TopOn ‘ 𝐴 ) )  →  ¬  𝑇  =  𝒫  𝐴 ) | 
						
							| 132 | 77 131 | pm2.65da | ⊢ ( ¬  𝐴  ∈  Fin  →  ¬  𝑇  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 133 | 132 | con4i | ⊢ ( 𝑇  ∈  ( TopOn ‘ 𝐴 )  →  𝐴  ∈  Fin ) |